Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative ‘ceramic-on-metal’ hip replacements to undergo clinical trials

19.08.2004


A new type of artificial hip, more robust and longer lasting than conventional artificial joints, is to undergo clinical trials and could be available for patients within five years.



These ‘ceramic-on-metal’ joints cause less damage to the surrounding bone than conventional artificial hips, therefore many recipients will avoid the need for further surgery. They could also lower the age at which it is practical for patients to undergo hip replacement, helping them to continue to lead active lives. The limitations of conventional artificial hips mean that many patients are advised to wait as long as possible, often in considerable discomfort, before having an artificial hip put in place.

The research is being carried out by engineers, medical researchers and biologists at the University of Leeds, underpinned by funding from the Engineering and Physical Sciences Research Council (EPSRC).


This research is a further improvement on work carried out by the same team to develop ‘metal–on-metal’ joints, which have been in use for a number of years. The ceramic part of the new artificial joint is the knuckle head and the cup of the hip is made out of the metal.

‘Metal-on-metal’ joints improve on the traditional ‘metal-head-in-polyethylene-cup’ implants, being longer lasting and more robust. This latest ‘ceramic-on-metal’ joint further improves on ‘metal-on-metal’ as it generates ten times less metal wear. The ceramic head remains smooth and undamaged throughout the lifetime of the joint and this improves the joint lubrication process, reducing friction and wear. The research team use a unique ‘Hip Simulator’ to carry out their work (picture available – see details below).

Professor John Fisher of the School of Mechanical Engineering is leading the research. He says: “An increasing number of younger and active patients now need hip replacements, and are demanding better-performing artificial joints. These recent developments will lead to a ten-fold improvement in wear performance.”

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>