Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative ‘ceramic-on-metal’ hip replacements to undergo clinical trials

19.08.2004


A new type of artificial hip, more robust and longer lasting than conventional artificial joints, is to undergo clinical trials and could be available for patients within five years.



These ‘ceramic-on-metal’ joints cause less damage to the surrounding bone than conventional artificial hips, therefore many recipients will avoid the need for further surgery. They could also lower the age at which it is practical for patients to undergo hip replacement, helping them to continue to lead active lives. The limitations of conventional artificial hips mean that many patients are advised to wait as long as possible, often in considerable discomfort, before having an artificial hip put in place.

The research is being carried out by engineers, medical researchers and biologists at the University of Leeds, underpinned by funding from the Engineering and Physical Sciences Research Council (EPSRC).


This research is a further improvement on work carried out by the same team to develop ‘metal–on-metal’ joints, which have been in use for a number of years. The ceramic part of the new artificial joint is the knuckle head and the cup of the hip is made out of the metal.

‘Metal-on-metal’ joints improve on the traditional ‘metal-head-in-polyethylene-cup’ implants, being longer lasting and more robust. This latest ‘ceramic-on-metal’ joint further improves on ‘metal-on-metal’ as it generates ten times less metal wear. The ceramic head remains smooth and undamaged throughout the lifetime of the joint and this improves the joint lubrication process, reducing friction and wear. The research team use a unique ‘Hip Simulator’ to carry out their work (picture available – see details below).

Professor John Fisher of the School of Mechanical Engineering is leading the research. He says: “An increasing number of younger and active patients now need hip replacements, and are demanding better-performing artificial joints. These recent developments will lead to a ten-fold improvement in wear performance.”

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>