Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Protective gene may enhance vaccine responses


Researchers from the University of Chicago have discovered the first of a new class of "protective factors" that appear to be required for the development of memory T cells, the cells that form the core of a vaccine response. The finding could help scientists create more effective vaccines and may lead to potent immune system-based therapies against diseases that have previously eluded vaccines, such as cancer or AIDS.

When the immune system detects an invader, such as a virus, T cells with an affinity for that particular invader multiply rapidly, attack and eliminate infected cells. Once the infection is cleared, however, 90 to 95 percent of those T cells die off, a process called contraction. The five percent or so that survive are known as memory T cells. If a similar infection recurs, these experienced warriors are prepared to rush to the site, recognize that invader and eradicate it again.

Scientists know a great deal about the rapid proliferation and differentiation of these T cells but very little about the factors that regulate contraction. In the September, 2004, issue of Nature Immunology – published on-line August 15 -- the researchers show that activation of the gene for the Serine protease inhibitor 2A (Spi2A) can prevent the death of T cells during the contraction phase, resulting in about five times as many memory T cells.

"Drugs based on protective factors such as Spi2A could provide an enormous boost to vaccines," said study author Philip Ashton-Rickardt, professor of pathology and a member of the committee on immunology at the University of Chicago. "This could allow us to extend the duration of an immune response against chronic infections or to focus the power of the immune system on tumor cells, targets that have thus far been quite elusive."

The researchers began by screening approximately 11,000 genes from mouse T cells, to find the small number of genes that were more active in the T cells that survived the contraction phase after exposure to a virus. Then they focused on the likely candidates, genes that interfered with the processes that trigger cell death. Their search led them to Spi2A.

Spi2A, they found, was produced in higher amounts in memory T cells. It suppressed cathepsin B, a potent digestive enzyme that can induce cell death. T cell populations in which Spi2A levels were reduced produced fewer memory cells. As a consequence, mice with low Spi2A levels produced a severely diminished response to the virus when exposed to it a second time.

On the other hand, mice with elevated Spi2A produced up to five times the normal number of memory T cells. When faced with the virus a second time, these memory T cells produced an overwhelming response, completely eradicating the infection within hours.

"Spi2A appears to play a crucial role in regulating contraction," Ashton-Rickardt said. "Increasing Spi2A levels alone can increase the survival of memory T cells from the standard 5 to 10 percent up to about 40 percent.

His lab has already begun to test small molecules that mimic the effects of Spi2A and could be given along with a vaccine.

This finding may also provide clues about how to reverse the process, suggesting ways to reduce or eliminate memory T cells responsible the unwanted immune responses that cause autoimmune diseases such as arthritis.

Additional authors of the paper include Ni Lui, Tiphanie Phillips, Minling Zhang, Yue Wang, Joseph Opferman and Ramila Shah, all from the University of Chicago. The National Institutes of Health funded the study.

John Easton | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>