Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protective gene may enhance vaccine responses

16.08.2004


Researchers from the University of Chicago have discovered the first of a new class of "protective factors" that appear to be required for the development of memory T cells, the cells that form the core of a vaccine response. The finding could help scientists create more effective vaccines and may lead to potent immune system-based therapies against diseases that have previously eluded vaccines, such as cancer or AIDS.



When the immune system detects an invader, such as a virus, T cells with an affinity for that particular invader multiply rapidly, attack and eliminate infected cells. Once the infection is cleared, however, 90 to 95 percent of those T cells die off, a process called contraction. The five percent or so that survive are known as memory T cells. If a similar infection recurs, these experienced warriors are prepared to rush to the site, recognize that invader and eradicate it again.

Scientists know a great deal about the rapid proliferation and differentiation of these T cells but very little about the factors that regulate contraction. In the September, 2004, issue of Nature Immunology – published on-line August 15 -- the researchers show that activation of the gene for the Serine protease inhibitor 2A (Spi2A) can prevent the death of T cells during the contraction phase, resulting in about five times as many memory T cells.


"Drugs based on protective factors such as Spi2A could provide an enormous boost to vaccines," said study author Philip Ashton-Rickardt, professor of pathology and a member of the committee on immunology at the University of Chicago. "This could allow us to extend the duration of an immune response against chronic infections or to focus the power of the immune system on tumor cells, targets that have thus far been quite elusive."

The researchers began by screening approximately 11,000 genes from mouse T cells, to find the small number of genes that were more active in the T cells that survived the contraction phase after exposure to a virus. Then they focused on the likely candidates, genes that interfered with the processes that trigger cell death. Their search led them to Spi2A.

Spi2A, they found, was produced in higher amounts in memory T cells. It suppressed cathepsin B, a potent digestive enzyme that can induce cell death. T cell populations in which Spi2A levels were reduced produced fewer memory cells. As a consequence, mice with low Spi2A levels produced a severely diminished response to the virus when exposed to it a second time.

On the other hand, mice with elevated Spi2A produced up to five times the normal number of memory T cells. When faced with the virus a second time, these memory T cells produced an overwhelming response, completely eradicating the infection within hours.

"Spi2A appears to play a crucial role in regulating contraction," Ashton-Rickardt said. "Increasing Spi2A levels alone can increase the survival of memory T cells from the standard 5 to 10 percent up to about 40 percent.

His lab has already begun to test small molecules that mimic the effects of Spi2A and could be given along with a vaccine.

This finding may also provide clues about how to reverse the process, suggesting ways to reduce or eliminate memory T cells responsible the unwanted immune responses that cause autoimmune diseases such as arthritis.

Additional authors of the paper include Ni Lui, Tiphanie Phillips, Minling Zhang, Yue Wang, Joseph Opferman and Ramila Shah, all from the University of Chicago. The National Institutes of Health funded the study.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>