Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marijuana ingredient inhibits VEGF pathway required for brain tumor blood vessels

16.08.2004


Cannabinoids, the active ingredients in marijuana, restrict the sprouting of blood vessels to brain tumors by inhibiting the expression of genes needed for the production of vascular endothelial growth factor (VEGF).



According to a new study published in the August 15, 2004 issue of the journal Cancer Research, administration of cannabinoids significantly lowered VEGF activity in laboratory mice and two patients with late-stage glioblastoma.

"Blockade of the VEGF pathway constitutes one of the most promising antitumoral approaches currently available," said Manuel Guzmán, professor of biochemistry and molecular biology, with the Complutense University in Madrid, Spain, and the study’s principal investigator. "The present findings provide a novel pharmacological target for cannabinoid-based therapies."


Glioblastoma multiforme, the most aggressive form of glioma, strikes more than 7,000 Americans each year and is considered one of the most malignant and deadliest forms of cancer, generally resulting in death within one to two years following diagnosis.

The disease is usually treated with surgery, followed by conventional radiation alone or in combination with chemotherapy. However, the main tumor often evades total destruction, surviving and growing again, eventually killing the patient. For this reason, researchers are actively seeking other therapeutic strategies, some of which might be considered novel.

In this study, the investigators chose to work with cannabinoids which, in previous studies, have been shown to inhibit the growth of blood vessels, or angiogenesis, in laboratory mice. However, little was known about the specific mechanisms by which cannabinoids impair angiogenesis, or whether the chemical might do the same in human tumors.

To answer the first part of the question, the scientists induced gliomas in mice, which were subsequently inoculated with cannabinoids. Using DNA array analysis, the team examined 267 genes associated with the growth of blood vessels in tumors and found that cannabinoids lowered the expression of several genes related to the VEGF pathway, critical for angiogenesis.

The researchers also discovered that cannabinoids apparently worked by increasing the activity of ceramide, a lipid mediator of apoptosis, resulting in the functional inhibition of cells needed for VEGF production. The ability of cannabinoids to alter VEGF production was significantly stifled following the introduction of a ceramide inhibitor.

"As far as we know, this is the first report showing that ceramide depresses VEGF pathway by interfering with VEGF production," according to Guzmán.

To answer the second part of the question relating to clinical tests, the scientists obtained tumor biopsies from two patients with glioblastomas who had failed standard therapy, including surgery, radiotherapy and chemotherapy. The biopsied tissue was analyzed before and after local injection of a cannabinoid.

"In both patients, VEGF levels in tumor extracts were lower after cannabinoid inoculation," said Guzmán. The results, he added, suggest a potential new approach toward the treatment of these otherwise intractable brain tumors. "It is essential to develop new therapeutic strategies for the management of glioblastoma multiforme," the scientists wrote, "which will most likely require a combination of therapies to obtain significant clinical results."

Also participating in the study were Cristina Blázquez and Amador Haro, from Complutense University; Luis González-Feria, from University Hospital, Tenerife, Spain; Luis Álvarez, from La Paz University Hospital in Madrid; and M. Llanos Casanova, from the Project on Cellular and Molecular Biology and Gene Therapy, CIEMAT, also in Madrid.

Warren R. Froelich | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>