Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune vaccine followed by chemotherapy slows incurable brain tumors, lengthens survival

16.08.2004


Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute have found that the combination of immunotherapy and chemotherapy significantly slowed tumor progression and extended survival of patients with glioblastoma multiforme (GBM), extremely aggressive and incurable brain tumors.

Although the exact mechanism is yet to be identified, the research team theorizes that like a one-two punch, the anti-tumor vaccine delivers an initial blow to the tumor cells which increases their vulnerability to tumor-killing drugs.

In an article published in the August 15, 2004 Clinical Cancer Research, the scientists say these "results suggest that chemotherapy synergizes with previous therapeutic vaccination to generate a uniquely effective treatment that slows GBM progression and significantly extends patient survival relative to individual therapies."



The average length of survival was extended to about 26 months when patients received the combined therapies, compared to 18 months for those who received vaccine alone and 16 months for those undergoing chemotherapy alone.

Five of 12 patients (41.7 percent) who received vaccine and chemotherapy survived past the two-year point, compared with only one of 12 (8.3 percent) who received the vaccine alone and one of 12 who received chemotherapy alone. Also, two patients who underwent combined therapy lived past the three-year mark while no patients receiving either single therapy survived this long.

"We’re very excited about the results. Obviously they need to be confirmed in a randomized trial, but assuming these outcomes are reproducible, it would be extremely gratifying to see this kind of increase in survival for such a devastating disease," said Keith L. Black, MD, Institute director and one of five Institute researchers who authored the paper.

Patients ranged in age from 32 to 78 years, with an average of 55 years. All of those whose cases were reviewed had first undergone tumor-removal surgery and radiation therapy. One group then received chemotherapy alone, another received vaccine alone and a third group was treated with vaccine followed by chemotherapy. Those who received vaccine, either alone or in combination, were participants in dendritic-cell vaccine studies conducted between 1998 and 2001 at the Institute.

Pioneered at Cedars-Sinai in the treatment of GBM, dendritic cell immunotherapy introduces foreign proteins from surgically removed tumors to "dendritic" cells taken from a patient’s blood. Dendritic cells, also called antigen-presenting cells, are elements of the immune system that "present" foreign material to cell-killing T lymphocytes.

In the laboratory, the tumor cells are cultured with the dendritic cells to enable the immune cells to recognize cancer cells as targets for attack. When the "new," specialized dendritic cells are injected back into the patient, they seek out remaining tumor cells and signal for T lymphocytes to destroy them.

In this study, all patients in the immunotherapy groups received three vaccines at two-week intervals. Patients in one of the clinical trials received a fourth injection six weeks later. All patients underwent magnetic resonance imaging to monitor their progress every two to three months.

Although several studies in the laboratory and in human tissue have documented the cancer-tracking and attacking abilities of dendritic cells and T lymphocytes, actual patient survival rates have remained virtually unchanged, perhaps because the tumor-killing action of T lymphocytes cannot keep pace with tumor cells that rapidly multiply and mutate.

"We know from our ongoing studies that the vaccine is able to elicit a strong anti-tumor response, but it appears that these extremely malignant tumors are inherently resistant to vaccine-elicited immune destruction alone," explained Christopher J. Wheeler, PhD, research scientist who is the paper’s first author.

"The fact that tumors treated with dendritic cell therapy are highly sensitive to subsequent chemotherapy suggests that the vaccine either ’primes’ the cell-death machinery or fundamentally alters the genetic or structural makeup of the tumor cells. Based on these results, it appears that this weakness can be exploited by the follow-up administration of drugs that attack the tumor’s DNA."

Asha Das, MD, who directs the Institute’s Neuro-oncology Program and has extensive clinical and research experience, said the benefits of combined therapy appear to markedly surpass those seen in previous vaccine studies and even the most optimistic analyses of chemotherapy in the treatment of GBM. "This is the first demonstration that a vaccine-based therapy followed by chemotherapy can provide clinical improvement to a majority of treated cancer patients," she said.

The authors went on to show that chemotherapeutic responsiveness in all vaccinated GBM patients was most strongly correlated with the size of a particular population of newly produced immune cells thought to be especially important for anti-GBM immune responses. "Despite the limitations associated with a non-randomized study, this constitutes evidence favoring the hypothesis that anti-tumor immunity impacts GBM chemosensitivity. Based on these results, we are developing a randomized Phase III trial with other institutions to confirm whether dendritic cell vaccination followed by chemotherapy will prolong survival in patients with glioblastoma," said John S. Yu, MD, who directs the Institute’s Stereotactic Radiosurgery Program, oversees clinical vaccine administration, and serves as co-director of the Comprehensive Brain Tumor Program. He and Gentao Liu, PhD, contributed immune cytotoxicity analysis for the report.

Seeing such positive results against a cancer as virulent as GBM, the Cedars-Sinai researchers anticipate that similar vaccine-drug combinations may prove to be at least as effective against other types of cancers. Assuming that follow-up studies support these early findings, the dendritic vaccine-chemotherapy approach may quickly become the treatment of choice for GBM patients while the search continues for even more effective treatments.

"Until now, there has been very little in terms of therapy that makes a difference for this type of disease. What we’re seeing here for the first time is what appears to be a significant increase in survival," said Dr. Black, who founded the Maxine Dunitz Neurosurgical Institute in 1997, directs Cedars-Sinai’s Division of Neurosurgery and the Comprehensive Brain Tumor Program, and holds the Ruth and Lawrence Harvey Chair in Neuroscience.

Sandra Van | EurekAlert!
Further information:
http://www.csmc.edu

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>