Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening in on the whispering heart

11.08.2004


A new implantable device that could send an early-warning signal to your doctor before heart rhythm problems arise, may now be possible thanks to research described in the latest issue of the Institute of Physics journal, Physiological Measurement.

More than five million people worldwide have been diagnosed with the heart disorder atrial fibrillation (AF). In AF, the upper chambers of the heart, the atria, quiver and beat rapidly: a condition that can often lead to heart failure and stroke, making AF a major cause of hospital admission. Similarly, another disorder of the heart’s rhythm, ventricular fibrillation (VF) can be just as bad for your health. Biomedical engineer Kityee Au-Yeung of Duke University, in North Carolina, says there is an urgent need to find a safe and effective treatment for AF.

Au-Yeung and her colleagues Chad Johnson and Patrick Wolf, have now developed an implantable electronic device that could help doctors listen in to the whispering heart, and prevent serious attacks of AF before it happens.



AF can often be stopped by a short, sharp electrical shock to the heart, a method known as electrical cardioversion, or defibrillation, a method familiar to anyone who watches TV hospital dramas. The method is designed to resynchronize the heart beat and restore its normal rhythm. Cardioversion is very successful in stopping an AF or VF episode and there are calls for the installation of defibrillators in many public places. But, the electrical shocks delivered to the patient can be very painful.

"AF is not an immediately life-threatening condition, and does not require immediate attention like VF does," explains Au-Yeung, "Defibrillating an AF episode, if not done properly, could itself lead to a fatal ventricular arrhythmia."

Au-Yeung and her colleagues are investigating a new version of electrical defibrillation that uses lower energy shocks, which they say would be far less painful for the patient as well as carrying less risk of complications. "We want to determine if AF can be terminated by using a series of lower energy electrical shocks, instead of a single high energy one," explain Au-Yeung, who is a graduate researcher in Wolf’s laboratory at Duke.

To test the concept the team has designed and built a device that can be implanted under the skin close to the heart, like a pacemaker. Sensors on the implantable cardiac telemetry system pick up the heart’s electrical pattern and send out a continuous radio signal, which is picked up by a notebook computer fitted with a receiver. With this set up, the researchers could record an electrocardiogram directly on to the computer without the need for external sensors and wiring.

This is not a one-way system though. The computer can send a signal back to the device telling it to deliver a short burst of electrical pulses directly to the heart. The sensors measure the effect on the heartbeat and send the information straight back to the computer. "We hope that with this novel system, we can learn more about AF and subsequently, find a more effective way to treat it," Au-Yeung says.

"A version of this device would most likely be targeted at patients who have already been implanted with a pacemaker or an ICD (implantable cardioverter defibrillator)," adds Au-Yeung, "For example, the remote monitoring and low energy pacing techniques could be incorporated into a pacemaker design." Remote monitoring from a patient’s home could alert their doctor to an AF episode and the doctor could then administer appropriate pacing therapy and monitor its effects.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.iop.org/EJ/journal/PM

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>