Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Listening in on the whispering heart


A new implantable device that could send an early-warning signal to your doctor before heart rhythm problems arise, may now be possible thanks to research described in the latest issue of the Institute of Physics journal, Physiological Measurement.

More than five million people worldwide have been diagnosed with the heart disorder atrial fibrillation (AF). In AF, the upper chambers of the heart, the atria, quiver and beat rapidly: a condition that can often lead to heart failure and stroke, making AF a major cause of hospital admission. Similarly, another disorder of the heart’s rhythm, ventricular fibrillation (VF) can be just as bad for your health. Biomedical engineer Kityee Au-Yeung of Duke University, in North Carolina, says there is an urgent need to find a safe and effective treatment for AF.

Au-Yeung and her colleagues Chad Johnson and Patrick Wolf, have now developed an implantable electronic device that could help doctors listen in to the whispering heart, and prevent serious attacks of AF before it happens.

AF can often be stopped by a short, sharp electrical shock to the heart, a method known as electrical cardioversion, or defibrillation, a method familiar to anyone who watches TV hospital dramas. The method is designed to resynchronize the heart beat and restore its normal rhythm. Cardioversion is very successful in stopping an AF or VF episode and there are calls for the installation of defibrillators in many public places. But, the electrical shocks delivered to the patient can be very painful.

"AF is not an immediately life-threatening condition, and does not require immediate attention like VF does," explains Au-Yeung, "Defibrillating an AF episode, if not done properly, could itself lead to a fatal ventricular arrhythmia."

Au-Yeung and her colleagues are investigating a new version of electrical defibrillation that uses lower energy shocks, which they say would be far less painful for the patient as well as carrying less risk of complications. "We want to determine if AF can be terminated by using a series of lower energy electrical shocks, instead of a single high energy one," explain Au-Yeung, who is a graduate researcher in Wolf’s laboratory at Duke.

To test the concept the team has designed and built a device that can be implanted under the skin close to the heart, like a pacemaker. Sensors on the implantable cardiac telemetry system pick up the heart’s electrical pattern and send out a continuous radio signal, which is picked up by a notebook computer fitted with a receiver. With this set up, the researchers could record an electrocardiogram directly on to the computer without the need for external sensors and wiring.

This is not a one-way system though. The computer can send a signal back to the device telling it to deliver a short burst of electrical pulses directly to the heart. The sensors measure the effect on the heartbeat and send the information straight back to the computer. "We hope that with this novel system, we can learn more about AF and subsequently, find a more effective way to treat it," Au-Yeung says.

"A version of this device would most likely be targeted at patients who have already been implanted with a pacemaker or an ICD (implantable cardioverter defibrillator)," adds Au-Yeung, "For example, the remote monitoring and low energy pacing techniques could be incorporated into a pacemaker design." Remote monitoring from a patient’s home could alert their doctor to an AF episode and the doctor could then administer appropriate pacing therapy and monitor its effects.

David Reid | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>