Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising Hospital Anti-infection Strategy Probably Won’t Work

11.08.2004


Hospital patients increasingly face tenacious bacterial infections because microbes found in hospitals acquire resistance to commonly prescribed antibiotics. A recent strategy alternating the most commonly used antibiotics has sparked hope of stopping the spread of antibiotic resistance.



But a new model shows that the practice of cycling – alternating between two or more classes of antibiotics as often as every few months – probably will not work. It is an unexpected finding at a time when clinical tests of the practice with real patients are in progress.

"We were really surprised. We expected to find a number of cases where it would work, and it was the exact opposite," said Carl Bergstrom, a University of Washington assistant professor of biology.


Instead of cycling, Bergstrom said, hospitals could probably help patients more by prescribing a variety of antibiotics, a method known as mixing. That means instead of having a standard, rotating antibiotic that is used routinely within a single unit, such as intensive care, or even throughout the hospital, a more effective strategy would be to have two or more generally prescribed antibiotics being administered randomly. Two people sharing a room could routinely receive different antibiotics.

Bergstrom noted that antibiotic mixing already is relatively common, not as a conscious strategy but rather because individual doctors develop preferences for the types of medications they prescribe. That can instigate the same type of antibiotic variety as mixing would introduce.

The theory behind antibiotic cycling is that, just as a pathogen strain begins to adapt to a particular antibiotic, a new antibiotic is introduced and the pathogen must start from scratch in building resistance. However, the model implies that pathogens actually encounter new antibiotics more frequently when hospitals use antibiotic mixing than when they use cycling, so cycling is unlikely to reduce resistance levels.

"If the cycling trials that are underway don’t work, we’ll know why they don’t," Bergstrom said. "And if they do work, the people conducting the trials are going to have to do further investigation on why they are working, because the rationale that we’ve been using for cycling doesn’t hold true."

The study is based on numerical models that examined the mechanics of how microbial infections spread in hospitals and how the microbes build resistance to antibiotics. Bergstrom is the lead author of a paper detailing the work, which is being published in the Proceedings of the National Academy of Sciences and will appear online the week of Aug. 9. Co-authors are Monique Lo and Marc Lipsitch of the Harvard University School of Public Health.

Another implication of the work, Bergstrom said, is that cycling actually could be detrimental to patients, "so the studies need to be very carefully monitored to make sure we are not causing additional harm in the hospital."

He likened a hospital to a disease-ridden island in the middle of a relatively healthy river. As people get well and leave the island, they can carry with them the antibiotic-resistant organisms developed on the island and the pathogen can spread. That can make things worse when the patients carrying the resistant pathogens return to the hospital-island, as they often do.

"When you release resistant bacteria into the community, I think it’s a lot like polluting an ocean," Bergstrom said. "At first you don’t notice, but then it starts to creep up on you and you have a real problem. And then it’s hard, maybe even impossible, to go back and fix it."

| newswise
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>