Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising Hospital Anti-infection Strategy Probably Won’t Work

11.08.2004


Hospital patients increasingly face tenacious bacterial infections because microbes found in hospitals acquire resistance to commonly prescribed antibiotics. A recent strategy alternating the most commonly used antibiotics has sparked hope of stopping the spread of antibiotic resistance.



But a new model shows that the practice of cycling – alternating between two or more classes of antibiotics as often as every few months – probably will not work. It is an unexpected finding at a time when clinical tests of the practice with real patients are in progress.

"We were really surprised. We expected to find a number of cases where it would work, and it was the exact opposite," said Carl Bergstrom, a University of Washington assistant professor of biology.


Instead of cycling, Bergstrom said, hospitals could probably help patients more by prescribing a variety of antibiotics, a method known as mixing. That means instead of having a standard, rotating antibiotic that is used routinely within a single unit, such as intensive care, or even throughout the hospital, a more effective strategy would be to have two or more generally prescribed antibiotics being administered randomly. Two people sharing a room could routinely receive different antibiotics.

Bergstrom noted that antibiotic mixing already is relatively common, not as a conscious strategy but rather because individual doctors develop preferences for the types of medications they prescribe. That can instigate the same type of antibiotic variety as mixing would introduce.

The theory behind antibiotic cycling is that, just as a pathogen strain begins to adapt to a particular antibiotic, a new antibiotic is introduced and the pathogen must start from scratch in building resistance. However, the model implies that pathogens actually encounter new antibiotics more frequently when hospitals use antibiotic mixing than when they use cycling, so cycling is unlikely to reduce resistance levels.

"If the cycling trials that are underway don’t work, we’ll know why they don’t," Bergstrom said. "And if they do work, the people conducting the trials are going to have to do further investigation on why they are working, because the rationale that we’ve been using for cycling doesn’t hold true."

The study is based on numerical models that examined the mechanics of how microbial infections spread in hospitals and how the microbes build resistance to antibiotics. Bergstrom is the lead author of a paper detailing the work, which is being published in the Proceedings of the National Academy of Sciences and will appear online the week of Aug. 9. Co-authors are Monique Lo and Marc Lipsitch of the Harvard University School of Public Health.

Another implication of the work, Bergstrom said, is that cycling actually could be detrimental to patients, "so the studies need to be very carefully monitored to make sure we are not causing additional harm in the hospital."

He likened a hospital to a disease-ridden island in the middle of a relatively healthy river. As people get well and leave the island, they can carry with them the antibiotic-resistant organisms developed on the island and the pathogen can spread. That can make things worse when the patients carrying the resistant pathogens return to the hospital-island, as they often do.

"When you release resistant bacteria into the community, I think it’s a lot like polluting an ocean," Bergstrom said. "At first you don’t notice, but then it starts to creep up on you and you have a real problem. And then it’s hard, maybe even impossible, to go back and fix it."

| newswise
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>