Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising Hospital Anti-infection Strategy Probably Won’t Work

11.08.2004


Hospital patients increasingly face tenacious bacterial infections because microbes found in hospitals acquire resistance to commonly prescribed antibiotics. A recent strategy alternating the most commonly used antibiotics has sparked hope of stopping the spread of antibiotic resistance.



But a new model shows that the practice of cycling – alternating between two or more classes of antibiotics as often as every few months – probably will not work. It is an unexpected finding at a time when clinical tests of the practice with real patients are in progress.

"We were really surprised. We expected to find a number of cases where it would work, and it was the exact opposite," said Carl Bergstrom, a University of Washington assistant professor of biology.


Instead of cycling, Bergstrom said, hospitals could probably help patients more by prescribing a variety of antibiotics, a method known as mixing. That means instead of having a standard, rotating antibiotic that is used routinely within a single unit, such as intensive care, or even throughout the hospital, a more effective strategy would be to have two or more generally prescribed antibiotics being administered randomly. Two people sharing a room could routinely receive different antibiotics.

Bergstrom noted that antibiotic mixing already is relatively common, not as a conscious strategy but rather because individual doctors develop preferences for the types of medications they prescribe. That can instigate the same type of antibiotic variety as mixing would introduce.

The theory behind antibiotic cycling is that, just as a pathogen strain begins to adapt to a particular antibiotic, a new antibiotic is introduced and the pathogen must start from scratch in building resistance. However, the model implies that pathogens actually encounter new antibiotics more frequently when hospitals use antibiotic mixing than when they use cycling, so cycling is unlikely to reduce resistance levels.

"If the cycling trials that are underway don’t work, we’ll know why they don’t," Bergstrom said. "And if they do work, the people conducting the trials are going to have to do further investigation on why they are working, because the rationale that we’ve been using for cycling doesn’t hold true."

The study is based on numerical models that examined the mechanics of how microbial infections spread in hospitals and how the microbes build resistance to antibiotics. Bergstrom is the lead author of a paper detailing the work, which is being published in the Proceedings of the National Academy of Sciences and will appear online the week of Aug. 9. Co-authors are Monique Lo and Marc Lipsitch of the Harvard University School of Public Health.

Another implication of the work, Bergstrom said, is that cycling actually could be detrimental to patients, "so the studies need to be very carefully monitored to make sure we are not causing additional harm in the hospital."

He likened a hospital to a disease-ridden island in the middle of a relatively healthy river. As people get well and leave the island, they can carry with them the antibiotic-resistant organisms developed on the island and the pathogen can spread. That can make things worse when the patients carrying the resistant pathogens return to the hospital-island, as they often do.

"When you release resistant bacteria into the community, I think it’s a lot like polluting an ocean," Bergstrom said. "At first you don’t notice, but then it starts to creep up on you and you have a real problem. And then it’s hard, maybe even impossible, to go back and fix it."

| newswise
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>