Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolvability could be a driving force in drug resistance

10.08.2004


Not only has life evolved, but life has evolved to evolve.



That’s the conclusion drawn by two Rice University scientists who have designed a computer simulation to test the idea that evolvability -- the likelihood of genetic mutation -- is a trait that can itself be favored or disfavored through the process of natural selection.

The results of the study appear in the Aug. 10 issue of Proceedings of the National Academy of Sciences.


Researchers Michael Deem, the John W. Cox Professor of Bioengineering and professor of physics and astronomy, and David Earl, Deem’s post-doctoral research fellow, drew their conclusions from a sophisticated computer simulation that recorded how much and how rapidly proteins mutated based on external changes in their environment. As the researchers ramped up the frequency and severity of environmental changes -- imagine rapid shifts between heat waves and cold snaps or heavy rains and droughts -- they saw an increased likelihood of survival among proteins that mutated more frequently.

"Selection for evolvability would help explain a growing body of experimental results including the evolution of drug resistance in bacteria, the fact that some immune system cells mutate much more rapidly than other cells in our bodies, as well as why some bacteria and higher-order organisms have a tendency to transpose or swap relatively long sequences of DNA," said Deem.

Traditionally, a significant number of evolutionary biologists have discounted the idea that evolvability is subject to natural selection, in part because the idea that evolution acts upon the mechanism that causes evolution seems to violate the basic scientific principle that an event cannot precede its own cause.

But Deem and Earl argue that causal violations need not occur. For one thing, there are several different ways that genetic mutations occur. Random changes along the DNA chain are now understood to be only one way that organisms evolve. Mutations also occur based on genetic recombination, genetic transposition and horizontal gene transfer. With these mechanisms, relatively large chunks of genetic code are shuffled or substituted for one another along the DNA chain.

Deem and Earl’s argument centers on the idea that the ability to reorder genes or to cause large-scale genetic change are themselves genetic traits, traits that are subject to selection like any others.

The upshot of this is that many observations within evolutionary biology that were heretofore considered evolutionary happenstance or accidents, may in fact be explained by selection for evolvability.

Two primary examples of this can be found in the escalating "arms race" that has been documented between pathogens and the immune systems in people and other higher-order vertebrates. Deem and Earl argue that wide variation among bacteria and other antigens has put selective pressure on our immune systems to rapidly adapt methods of identifying and attacking invaders. Similar observations on the rapid mutability among flu viruses and other invading pathogens provide additional evidence, they said.

"The implication is that the drugs we have developed to fight invading pathogens also confer selective pressure on the evolvability of the pathogens themselves," Earl said. "In drug design, it is important to consider this and to look for ways to minimize or counteract this driving force for drug resistence."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>