Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new marker for osteoarthritis


Osteoarthritis (OA) is a common, crippling age-related disease characterized by the gradual destruction of cartilage cushioning the joints. To assess cartilage erosion, doctors routinely rely on measurement of the joint space width using radiographs. To be visible on an X-ray film, however, significant cartilage degradation must have already occurred. By the time radiographs reveal destruction, the damage to the joint is usually irreversible. Due to this method’s relatively insensitive nature, it also takes at least a year or two to detect progression of damage that has been captured on radiographs.

To improve the early diagnosis and effective treatment of OA, medical researchers have turned to the promise of biochemical markers – molecules released into bodily fluids during the process of tissue turnover. Recently, researchers in the Netherlands identified a novel marker linked to both the prevalence and the progression of OA, particularly at the knee and the hip. They share their breakthrough findings in the August 2004 issue of Arthritis & Rheumatism.

Building on the analysis of cartilage metabolism, the researchers concentrated on peptide fragments of type II collagen. Since type II collagen is located almost exclusively in cartilage, a fragment – abbreviated as CTX-II – was seen as a potential marker for cartilage destruction. To determine the relationship between CTX-II and OA, researchers drew on a large, established sample: 1,235 men and women ages 55 and older enrolled in the Rotterdam Study, a long-term research effort to investigate the incidence of, and risk factors for, chronic disabling diseases. Researchers followed up with participants, whose average was 66, over a time span of six-and-a-half years.

At the study’s onset, 19 percent of the subjects had clear radiographic evidence of OA in at least one knee; 10 percent had OA in at least one hip. At baseline, urine samples from all subjects were assessed for the concentration of CTX-II. The participants were then divided into four groups for further evaluation and continued monitoring, according to their levels of CTX-II.

According to the researchers’ calculations, subjects with a CTX-II level in the highest quartile had a 4-fold increased risk of developing OA in either the knee or hip compared with subjects in the lowest quartile. During the follow-up period, confirmed by repeated radiographs, subjects with the highest concentration of CTX-II were significantly more likely to experience rapid, destructive progression of OA – 6 times more likely at the knee and 8 times more likely at the hip. The subjects with the highest CTX-II levels also had the highest complaints of joint pain. In addition, the researchers found a slight rise in CTX-II concentration with increasing age among women. However, the strong correlation between CTX-II and both the incidence and severity of OA was shown to be independent of age, sex, and body mass index.

"This is the first large follow-up study in which the use of CTX-II as a biomarker for cartilage degradation and disease progression has been investigated," emphasizes the team’s leading researcher and spokesperson, M. Reijman, MSc. "Based on the results, we conclude that the CTX-II concentration is markedly associated with the prevalence and progression of OA of the knee and hip, and that these associations are independent of known risk factors for radiographic OA. The presence of joint pain seems to augment this relationship," he notes, "which might reflect the effects of an ongoing OA process. The increase of CTX-II in women after menopause may reflect a protective effect of estrogen against cartilage loss. Further research is necessary to establish the clinical utility of this novel biomarker for OA."

David Greenberg | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>