Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D irradiation of brain cancer in children spares IQ, memory, other cognitive functions

06.08.2004


Encouraging results of Phase II conformal radiation trial for ependymoma could resolve the dilemma on whether to withhold therapeutic radiation from children to preserve their cognitive development

A radiation therapy technique that kills brain tumors in children while sparing normal tissue allows young patients to enjoy normal development of memory, reasoning, problem-solving and other cognitive functions, according to investigators at St. Jude Children’s Research Hospital. The results of a Phase II clinical trial of this technique, called conformal radiation therapy (CRT), hold promise for sparing cognitive development even in children younger than three years.

This research is published in the August issue of the Journal of Clinical Oncology. The St. Jude study found that about 75 percent of the children treated for ependymoma with CRT did not experience progression of their cancer after three years, and their cognitive development was not significantly impaired by radiation therapy.



Ependymoma is a malignant brain tumor that occurs predominately in children. About 150 cases occur in the United States each year among people younger than 14 years.

The study’s findings could offer an answer to a long-standing dilemma facing physicians treating children who have brain tumors, according to Thomas Merchant, D.O., Ph.D., chief of Radiation Oncology at St. Jude. Following surgery to remove as much of the tumor as possible, radiation treatment is more effective than chemotherapy at eradicating the remaining cancer. However, despite its lower rate of treatment success, chemotherapy has been used in the past for young children because of fear among physicians and parents of radiation-related treatment effects.

Merchant is the principal investigator and lead author of the JCO report.

"The long-term problems with cognitive development caused by traditional radiation therapy make this treatment unpopular among both physicians and parents," Merchant said. "However, the improved outcomes we have seen in both disease control and intellectual development using CRT suggest that it might be possible to reintroduce the routine use of radiation therapy as a treatment option even for very young children."

Merchant is currently principal investigator for a national trial of CRT for ependymoma based on the study’s findings. The trial is conducted by the Children’s Oncology Group.

CRT combines CAT scans and MRI to create pictures of the cancer that a computer then turns into three-dimensional images of the tumor exactly as it appears in the brain. These images are combined with computer-controlled radiation beams and meticulous positioning of the treatment table on which the patient lies. Radiation hits the tumor at precisely calculated angles and depths matching the 3-D image of the tumor, obliterating the cancer and sparing healthy tissue.

The median age of the 88 patients in the St. Jude study was 2.85 years, and 48 patients were younger than three years. According to Merchant, the inclusion of children younger than 3 years at the time of irradiation was unique, since children in this age group are at greatest risk of the effects of irradiation.

Before CRT, all patients underwent surgery to remove as much tumor as possible. Patients underwent testing of their cognitive abilities before CRT and again at six, 12, 24, 36, 48 and 60 months after start of radiation therapy. The tests varied according to age and included assessments of IQ, verbal memory and recall, academic achievement and other developmental skills that could be disrupted by radiation damage to the brain.

Merchant attributes the encouraging results of the study to three factors: 1) the large number of patients that underwent extensive surgery to remove most of the tumor before irradiation therapy; 2) the use of CRT to target tumors; and 3) the relatively high dose of radiation that could be used with CRT without jeopardizing healthy brain tissue.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>