Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D irradiation of brain cancer in children spares IQ, memory, other cognitive functions

06.08.2004


Encouraging results of Phase II conformal radiation trial for ependymoma could resolve the dilemma on whether to withhold therapeutic radiation from children to preserve their cognitive development

A radiation therapy technique that kills brain tumors in children while sparing normal tissue allows young patients to enjoy normal development of memory, reasoning, problem-solving and other cognitive functions, according to investigators at St. Jude Children’s Research Hospital. The results of a Phase II clinical trial of this technique, called conformal radiation therapy (CRT), hold promise for sparing cognitive development even in children younger than three years.

This research is published in the August issue of the Journal of Clinical Oncology. The St. Jude study found that about 75 percent of the children treated for ependymoma with CRT did not experience progression of their cancer after three years, and their cognitive development was not significantly impaired by radiation therapy.



Ependymoma is a malignant brain tumor that occurs predominately in children. About 150 cases occur in the United States each year among people younger than 14 years.

The study’s findings could offer an answer to a long-standing dilemma facing physicians treating children who have brain tumors, according to Thomas Merchant, D.O., Ph.D., chief of Radiation Oncology at St. Jude. Following surgery to remove as much of the tumor as possible, radiation treatment is more effective than chemotherapy at eradicating the remaining cancer. However, despite its lower rate of treatment success, chemotherapy has been used in the past for young children because of fear among physicians and parents of radiation-related treatment effects.

Merchant is the principal investigator and lead author of the JCO report.

"The long-term problems with cognitive development caused by traditional radiation therapy make this treatment unpopular among both physicians and parents," Merchant said. "However, the improved outcomes we have seen in both disease control and intellectual development using CRT suggest that it might be possible to reintroduce the routine use of radiation therapy as a treatment option even for very young children."

Merchant is currently principal investigator for a national trial of CRT for ependymoma based on the study’s findings. The trial is conducted by the Children’s Oncology Group.

CRT combines CAT scans and MRI to create pictures of the cancer that a computer then turns into three-dimensional images of the tumor exactly as it appears in the brain. These images are combined with computer-controlled radiation beams and meticulous positioning of the treatment table on which the patient lies. Radiation hits the tumor at precisely calculated angles and depths matching the 3-D image of the tumor, obliterating the cancer and sparing healthy tissue.

The median age of the 88 patients in the St. Jude study was 2.85 years, and 48 patients were younger than three years. According to Merchant, the inclusion of children younger than 3 years at the time of irradiation was unique, since children in this age group are at greatest risk of the effects of irradiation.

Before CRT, all patients underwent surgery to remove as much tumor as possible. Patients underwent testing of their cognitive abilities before CRT and again at six, 12, 24, 36, 48 and 60 months after start of radiation therapy. The tests varied according to age and included assessments of IQ, verbal memory and recall, academic achievement and other developmental skills that could be disrupted by radiation damage to the brain.

Merchant attributes the encouraging results of the study to three factors: 1) the large number of patients that underwent extensive surgery to remove most of the tumor before irradiation therapy; 2) the use of CRT to target tumors; and 3) the relatively high dose of radiation that could be used with CRT without jeopardizing healthy brain tissue.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>