Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery may help transplants survive

05.08.2004


Blocking growth factor stops rejection process



For the first time scientists have found that a growth factor called vascular endothelial growth factor receptor-3 (VEGFR-3), known to cause the growth of lymphatic vessels in the body, controls how immune cells traffic (move) within the eye and also stimulates the immune system to reject corneal transplants--the most common type of transplantation performed. The researchers from the Schepens Eye Research Institute and the Massachusetts Eye and Ear Infirmary, both affiliates of Harvard Medical School, have also found that when this growth factor is blocked, corneal transplants survive. The study, published in the August issue of Nature Medicine, is the first to make a link between VEGEFR-3 and the body’s immune response, and may hold significant promise not only for new treatments to prevent transplant rejection but also for diseases such as cancer that may proliferate because of VEGF-3.

"What we have discovered is a previously unknown connection or ’pathway’ that stimulates the immune response in the eye and in other parts of the body," says Reza Dana, MD, MPH, a Senior Scientist at the Schepens Eye Research Institute, an Associate Professor and corneal specialist at the Massachusetts Eye and Ear Infirmary and Harvard Medical School, and the senior author of the study.


Each year, nearly 40 thousand Americans receive corneal transplants to replace injured or diseased corneas. Approximately 90 percent of corneal transplants are successful because the eye is intrinsically less likely to reject transplanted material than other parts of the body. However, to suppress rejection of corneal transplants, patients need to use steroid drops – which can cause glaucoma, cataract development, and infection -- for years. Even then, many corneal transplants fail, and their failure can cause devastating vision loss. If transplants are placed in eyes suffering from inflammation (caused by a full-blown immune response to the original injury or disease), rejection rates go well over 50 percent, regardless of the therapy employed.

"We are trying to understand what is happening at the molecular level so that we can arrest this process," says Dana, who has devoted much of his research to finding the mechanisms that trigger immune responses, and, in the case of corneal transplants, the "unwanted" immune response that causes corneal transplant rejection.

VEGFR-3’s role in activating the immune response in the cornea is the most recent in a series of discoveries by Dana and his research team in their exploration of the immune response to corneal transplants.

In the normal immune response, cells known as antigen-presenting cells (APCs) are activated when they detect the presence of proteins (also known as "antigens") from foreign intruders such as bacteria, or, in the case of transplantation, proteins from other people. The job of the APCs -- which exist in all body tissues -- is to notify the immune system of the foreign tissue, pick up that tissue and then travel through vessels known as lymphatics to the lymph nodes where they can activate immunity. In the lymph nodes, APCs present the foreign protein to T Cells, which then custom design an immune attack to destroy the invader.

In previous work, Dana and his team found that removing the lymph nodes that drain the eyes prevented rejection of transplants that were vulnerable. They also found that VEGFR-3, known to cause the growth of lymphatic vessels, was expressed on the APCs and new lymphatic vessels were present in the corneas that were inflamed (or under immune attack.)

In the August Nature Medicine study, Dana and his colleagues hypothesized that when a cornea becomes inflamed, VEGFR-3 becomes activated on the antigen-presenting cells. They also believed that VEGFR-3 then triggered the APCs to move into the lymphatic vessels en route to the lymph nodes to make contact with the T-cells.

Using in-the-dish (in vitro) and living mice (in vivo), the team was able to show that VEGFR-3 was responsible for mobilizing APCs to move into the lymphatic system. Next, the research team blocked VEGFR-3 in mice using a specific protein (immunoglobulin) known to impede its function. When the VEGFR-3 was blocked, the APCs were also prevented from entering the lymphatic system, and the immune response was arrested. "We had never seen this connection before," says Dana. He added that while this connection was determined for the eye, it may well operate in other tissues as well.

While Dana says it is not yet clear exactly how this discovery will translate to the clinical setting, he believes continued study of this new pathway has potential for improving transplantation in the eye and potentially other parts of the body.

And, it could be a new piece of the cancer puzzle. "It has been shown that antigen presenting cells around tumors also express VEGFR-3 and we already know that access to lymphatics and lymph nodes is the way cancers spread through the body," he says.

"The findings of Dr. Dana and his colleagues provide new insights into transplant immunology and biology which go well beyond the eye, and offer new therapeutic approaches in organ transplantation and cancer treatment. Dr. Dana is clearly one of the outstanding physician scientists in our department," says Joan W. Miller, MD, Chief and Chair of Ophthalmology at Massachusetts Eye and Ear Infirmary and Harvard Medical School.

Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>