Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wartime Spitfire Strain Test Monitors Stress On Key Heart Artery - Aortic Aneurysm

04.08.2004


Geoff Calvert with the duplicate aneurysm


Geoff Calvert with the duplicate aneurysm & sress analysis


Researchers at the University of Warwick have found a way of using a test devised in the 1930s, and used to gauge the stress on the superchargers in wartime spitfire fighter planes, to model the stress that surgical procedures would put on an aortic aneurysm. An aortic aneurysm is a dangerous bulge in the body’s largest artery -the aorta. The aorta is a crucial artery as it carries all the blood pumped from the heart.

Photoelasticity is a technique that has been used for decades in industry. It looks at the patterns of coloured light reflected from the surface of an object to gain a detailed understanding of the stresses on that object. In its most modern incarnation photoelectric stress analysis uses high tech light sources and computer analysis to get an even more precise understanding of the stresses involved. However it is all very well mounting a piece of machinery on a test rig to perform these tests but how would one use it to understand the stress on a part of the human body when the human is still using it? Now researchers at the University of Warwick’s Warwick Manufacturing Group working with a surgeon at UCL have found a way to do just that.

Initially surgeons had tried placing mechanical strain gauges on an aortic aneurysm as they manipulated it but found that the gauges themselves placed an unwelcome additional physical strain on the aortic aneurysm. They turned to researchers at the University of Warwick led by Geoff Calvert who had an idea that would combine photoelastic stress analysis with the technology of rapid prototyping to solve the problem. The University of Warwick and UCL researchers took a 3D scan of the patient’s actual aortic aneurysm and used rapid prototyping technology to produce an exact latex duplicate of the aneurysm. They then covered the duplicate with a reflective coating and used photoelastic stress analysis to examine the stress on the model aneurysm as the surgeon manipulated it.



Dr Arindam Chaudhuri a heart surgeon carrying out research at UCL said:

“One of the exciting benefits of this technique is that it will actually allow surgeons to explore a greater range of possible interventions and manipulations of an aneurysm and get a clear picture of the stresses created without the obvious risks that testing less conservative interventions would bring if they were tried out on the actual patient.”

University of Warwick researcher Mr Geoff Calvert is pleased with the success of the work so far. He is now seeking further funding to research materials that could be used in the rapid prototyped aortic aneurysm that would provide an even closer mimic of the mechanical properties of the original aortic aneurysm. He is also looking for support to develop another technique that would stretch the ability of current photoelectric stress analysis equipment to draw on the more limited reflective properties of the original aortic aneurysm which would provide surgeons with a real time monitor of the stress on the aneurysm as they operate.

For more information please contact:

Mr Geoff Calvert, Warwick Manufacturing Group
University of Warwick 024 76575436
Mobile: 0777 3800769 g.c.calvert@warwick.ac.uk

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>