Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wartime Spitfire Strain Test Monitors Stress On Key Heart Artery - Aortic Aneurysm

04.08.2004


Geoff Calvert with the duplicate aneurysm


Geoff Calvert with the duplicate aneurysm & sress analysis


Researchers at the University of Warwick have found a way of using a test devised in the 1930s, and used to gauge the stress on the superchargers in wartime spitfire fighter planes, to model the stress that surgical procedures would put on an aortic aneurysm. An aortic aneurysm is a dangerous bulge in the body’s largest artery -the aorta. The aorta is a crucial artery as it carries all the blood pumped from the heart.

Photoelasticity is a technique that has been used for decades in industry. It looks at the patterns of coloured light reflected from the surface of an object to gain a detailed understanding of the stresses on that object. In its most modern incarnation photoelectric stress analysis uses high tech light sources and computer analysis to get an even more precise understanding of the stresses involved. However it is all very well mounting a piece of machinery on a test rig to perform these tests but how would one use it to understand the stress on a part of the human body when the human is still using it? Now researchers at the University of Warwick’s Warwick Manufacturing Group working with a surgeon at UCL have found a way to do just that.

Initially surgeons had tried placing mechanical strain gauges on an aortic aneurysm as they manipulated it but found that the gauges themselves placed an unwelcome additional physical strain on the aortic aneurysm. They turned to researchers at the University of Warwick led by Geoff Calvert who had an idea that would combine photoelastic stress analysis with the technology of rapid prototyping to solve the problem. The University of Warwick and UCL researchers took a 3D scan of the patient’s actual aortic aneurysm and used rapid prototyping technology to produce an exact latex duplicate of the aneurysm. They then covered the duplicate with a reflective coating and used photoelastic stress analysis to examine the stress on the model aneurysm as the surgeon manipulated it.



Dr Arindam Chaudhuri a heart surgeon carrying out research at UCL said:

“One of the exciting benefits of this technique is that it will actually allow surgeons to explore a greater range of possible interventions and manipulations of an aneurysm and get a clear picture of the stresses created without the obvious risks that testing less conservative interventions would bring if they were tried out on the actual patient.”

University of Warwick researcher Mr Geoff Calvert is pleased with the success of the work so far. He is now seeking further funding to research materials that could be used in the rapid prototyped aortic aneurysm that would provide an even closer mimic of the mechanical properties of the original aortic aneurysm. He is also looking for support to develop another technique that would stretch the ability of current photoelectric stress analysis equipment to draw on the more limited reflective properties of the original aortic aneurysm which would provide surgeons with a real time monitor of the stress on the aneurysm as they operate.

For more information please contact:

Mr Geoff Calvert, Warwick Manufacturing Group
University of Warwick 024 76575436
Mobile: 0777 3800769 g.c.calvert@warwick.ac.uk

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>