Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unravel the Drama of a Decade of Cancer Research

03.08.2004


Reviewing the last 10 years of cancer research much as they might the production of a play complete with cast members, opening acts and an ever-twisting plot, two of the most cited names in science say that one of the most promising roles that newly discovered cancer genes may perform is in early detection, which likely will be as important as new treatments.

In an editorial review that is the centerpiece of Nature Medicine’s 10th anniversary August issue, Johns Hopkins Kimmel Cancer Center scientists Bert Vogelstein, M.D., and Kenneth Kinzler, Ph.D., used a lengthy Broadway metaphor to suggest that the conquest of cancer is a drama that has lots more acts to come, some of them destined to refocus large parts of the national research effort.

"The best chance of managing these diseases in the next few decades relies on taking advantage of the genes we now know lie at the heart of the process," says Vogelstein, who is the world’s most influential scientist according to citation rankings by the Institute of Scientific Information. "Cancer already is curable when it’s caught early. New methods of detecting cancers, although less dramatic and not as popular, offer very promising approaches for limiting cancer deaths in the future."



In the past, the Hopkins scientists argue that the lack of better "scripts" including key gene characters hindered drug development and early diagnostic efforts. With a refined cast of characters, more researchers may steer their efforts to better diagnostic and therapeutic strategies, which may have a greater impact on cancer death rates.

In their review, Vogelstein and Kinzler describe the progress in understanding cancer and the roles of nearly 100 genes that have been definitively linked to cancer. The opening act introduces three kinds of genes that regulate cancer growth pathways. Oncogenes, when altered, get stuck in active duty, much as a stuck accelerator in a car. In opposite roles, tumor suppressor genes act as malfunctioning brakes. Finally, faulty stability genes act like bad auto mechanics, failing to repair mistakes made in the DNA code during replication or exposure to mutating agents. Genes that control blood supply to a tumor are cast in important supporting roles.

The central plot involves the cell growth pathways that these genes control--discoveries that demonstrate how each gene affects a cascade of protein production that is necessary for cancer development. Remarkably, the majority of these genes, which vary considerably in different cancers, converge on a relatively small number of similar pathways that direct cancer growth, providing a common story line.

"Researchers know many of the genes involved in cancer development and are learning how to put the entire cast together, and we are beginning to understand the best ways to apply gene discoveries to help patients," says Kinzler. "The last decade of gene discovery now sets the stage for this sequel which will include new methods for early detection as well as targeted therapeutics."

In addition to developing more sophisticated tools for early detection of tumors, Vogelstein and Kinzler say other areas of future research should include better models for testing targeted therapies and investigating the functions of novel genes auditioning for leading roles in the cancer process.

Vogelstein and Kinzler have been studying the genetics of cancer for more than 20 years and have made pivotal discoveries of genes and pathways that lead to cancer, including those involving p53, APC, mismatch repair and Gli. Vogelstein is the Clayton Professor of Oncology at the Johns Hopkins Kimmel Cancer Center and Investigator, Howard Hughes Medical Institute. Kinzler is Professor of Oncology and co-directs the Molecular Genetics Laboratory with Vogelstein at the Kimmel Cancer Center. Vogelstein, B. and Kinzler, K. W., Cancer Genes and the Pathways They Control, Nat Med 10(8), August 2004.

| newswise
Further information:
http://www.hopkinskimmelcancercenter.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>