Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unravel the Drama of a Decade of Cancer Research

03.08.2004


Reviewing the last 10 years of cancer research much as they might the production of a play complete with cast members, opening acts and an ever-twisting plot, two of the most cited names in science say that one of the most promising roles that newly discovered cancer genes may perform is in early detection, which likely will be as important as new treatments.

In an editorial review that is the centerpiece of Nature Medicine’s 10th anniversary August issue, Johns Hopkins Kimmel Cancer Center scientists Bert Vogelstein, M.D., and Kenneth Kinzler, Ph.D., used a lengthy Broadway metaphor to suggest that the conquest of cancer is a drama that has lots more acts to come, some of them destined to refocus large parts of the national research effort.

"The best chance of managing these diseases in the next few decades relies on taking advantage of the genes we now know lie at the heart of the process," says Vogelstein, who is the world’s most influential scientist according to citation rankings by the Institute of Scientific Information. "Cancer already is curable when it’s caught early. New methods of detecting cancers, although less dramatic and not as popular, offer very promising approaches for limiting cancer deaths in the future."



In the past, the Hopkins scientists argue that the lack of better "scripts" including key gene characters hindered drug development and early diagnostic efforts. With a refined cast of characters, more researchers may steer their efforts to better diagnostic and therapeutic strategies, which may have a greater impact on cancer death rates.

In their review, Vogelstein and Kinzler describe the progress in understanding cancer and the roles of nearly 100 genes that have been definitively linked to cancer. The opening act introduces three kinds of genes that regulate cancer growth pathways. Oncogenes, when altered, get stuck in active duty, much as a stuck accelerator in a car. In opposite roles, tumor suppressor genes act as malfunctioning brakes. Finally, faulty stability genes act like bad auto mechanics, failing to repair mistakes made in the DNA code during replication or exposure to mutating agents. Genes that control blood supply to a tumor are cast in important supporting roles.

The central plot involves the cell growth pathways that these genes control--discoveries that demonstrate how each gene affects a cascade of protein production that is necessary for cancer development. Remarkably, the majority of these genes, which vary considerably in different cancers, converge on a relatively small number of similar pathways that direct cancer growth, providing a common story line.

"Researchers know many of the genes involved in cancer development and are learning how to put the entire cast together, and we are beginning to understand the best ways to apply gene discoveries to help patients," says Kinzler. "The last decade of gene discovery now sets the stage for this sequel which will include new methods for early detection as well as targeted therapeutics."

In addition to developing more sophisticated tools for early detection of tumors, Vogelstein and Kinzler say other areas of future research should include better models for testing targeted therapies and investigating the functions of novel genes auditioning for leading roles in the cancer process.

Vogelstein and Kinzler have been studying the genetics of cancer for more than 20 years and have made pivotal discoveries of genes and pathways that lead to cancer, including those involving p53, APC, mismatch repair and Gli. Vogelstein is the Clayton Professor of Oncology at the Johns Hopkins Kimmel Cancer Center and Investigator, Howard Hughes Medical Institute. Kinzler is Professor of Oncology and co-directs the Molecular Genetics Laboratory with Vogelstein at the Kimmel Cancer Center. Vogelstein, B. and Kinzler, K. W., Cancer Genes and the Pathways They Control, Nat Med 10(8), August 2004.

| newswise
Further information:
http://www.hopkinskimmelcancercenter.org

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>