Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unravel the Drama of a Decade of Cancer Research

03.08.2004


Reviewing the last 10 years of cancer research much as they might the production of a play complete with cast members, opening acts and an ever-twisting plot, two of the most cited names in science say that one of the most promising roles that newly discovered cancer genes may perform is in early detection, which likely will be as important as new treatments.

In an editorial review that is the centerpiece of Nature Medicine’s 10th anniversary August issue, Johns Hopkins Kimmel Cancer Center scientists Bert Vogelstein, M.D., and Kenneth Kinzler, Ph.D., used a lengthy Broadway metaphor to suggest that the conquest of cancer is a drama that has lots more acts to come, some of them destined to refocus large parts of the national research effort.

"The best chance of managing these diseases in the next few decades relies on taking advantage of the genes we now know lie at the heart of the process," says Vogelstein, who is the world’s most influential scientist according to citation rankings by the Institute of Scientific Information. "Cancer already is curable when it’s caught early. New methods of detecting cancers, although less dramatic and not as popular, offer very promising approaches for limiting cancer deaths in the future."



In the past, the Hopkins scientists argue that the lack of better "scripts" including key gene characters hindered drug development and early diagnostic efforts. With a refined cast of characters, more researchers may steer their efforts to better diagnostic and therapeutic strategies, which may have a greater impact on cancer death rates.

In their review, Vogelstein and Kinzler describe the progress in understanding cancer and the roles of nearly 100 genes that have been definitively linked to cancer. The opening act introduces three kinds of genes that regulate cancer growth pathways. Oncogenes, when altered, get stuck in active duty, much as a stuck accelerator in a car. In opposite roles, tumor suppressor genes act as malfunctioning brakes. Finally, faulty stability genes act like bad auto mechanics, failing to repair mistakes made in the DNA code during replication or exposure to mutating agents. Genes that control blood supply to a tumor are cast in important supporting roles.

The central plot involves the cell growth pathways that these genes control--discoveries that demonstrate how each gene affects a cascade of protein production that is necessary for cancer development. Remarkably, the majority of these genes, which vary considerably in different cancers, converge on a relatively small number of similar pathways that direct cancer growth, providing a common story line.

"Researchers know many of the genes involved in cancer development and are learning how to put the entire cast together, and we are beginning to understand the best ways to apply gene discoveries to help patients," says Kinzler. "The last decade of gene discovery now sets the stage for this sequel which will include new methods for early detection as well as targeted therapeutics."

In addition to developing more sophisticated tools for early detection of tumors, Vogelstein and Kinzler say other areas of future research should include better models for testing targeted therapies and investigating the functions of novel genes auditioning for leading roles in the cancer process.

Vogelstein and Kinzler have been studying the genetics of cancer for more than 20 years and have made pivotal discoveries of genes and pathways that lead to cancer, including those involving p53, APC, mismatch repair and Gli. Vogelstein is the Clayton Professor of Oncology at the Johns Hopkins Kimmel Cancer Center and Investigator, Howard Hughes Medical Institute. Kinzler is Professor of Oncology and co-directs the Molecular Genetics Laboratory with Vogelstein at the Kimmel Cancer Center. Vogelstein, B. and Kinzler, K. W., Cancer Genes and the Pathways They Control, Nat Med 10(8), August 2004.

| newswise
Further information:
http://www.hopkinskimmelcancercenter.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>