Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genome-wide analysis provides detailed understanding of flesh-eating bacteria epidemics


New research using nearly a dozen different genomic testing procedures has revealed unprecedented detail about the molecular characteristics and virulence of group A streptococcus (GAS), the "flesh-eating" bacteria, according to scientists at the Rocky Mountain Laboratories (RML), part of the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health.

The study, conducted by an international team led by RML scientist James M. Musser, M.D., Ph.D., will appear in the Proceedings of the National Academy of Sciences online sometime this week.

"This work indicates that using extensive genome-wide molecular analyses is an important new strategy for understanding how and why pathogens emerge," notes NIAID Director Anthony S. Fauci, M.D. "What’s more, the method can be applied to other bacterial and viral pathogens by adjusting the techniques and strategies."

Previous studies, Dr. Musser says, substantially underestimated genetic diversity in bacteria because these studies neither employed the array of molecular techniques they did nor analyzed a comprehensive database of patient samples.

"Before the advent of genome sequencing and genome-wide analysis methods, our knowledge of molecular characteristics of pathogenic bacterial infections in distinct populations was extremely limited," says Dr. Musser.

In the new study, the RML team identified previously unknown genetic distinctions in M3 strains of GAS, revealing why only some strains rapidly expand to cause epidemics. All GAS strains can cause serious infections, Dr. Musser says, but the M3 strains are unusually virulent.

Dr. Musser explains that shortly after 2002, when he and his colleague Stephen Beres, Ph.D., at RML completed a genome sequence of the serotype M3 GAS, they turned their attention to using the new information to molecularly dissect two epidemics of life-threatening GAS infections, or necrotizing fasciitis--the "flesh-eating" syndrome. The study involved analyzing hundreds of patient cultures obtained over 11 years from Ontario, Canada, in epidemiologic studies conducted by Donald Low, M.D., and Allison McGeer, M.D., of the Mount Sinai Hospital in Toronto.

"We proposed an extensive collaboration that would mesh the RML GAS genomic analysis information with the Ontario patient samples and epidemiologic information to provide new understanding of these two GAS epidemics," Dr. Musser says. The Baylor College of Medicine in Houston, with which Dr. Musser is also affiliated, also contributed to the project.

Dr. Musser’s team analyzed a comprehensive sample of GAS cultures collected from patients between 1992 and 2002. Using the new genetic tools, the team discovered previously unknown genetic shifting and the evolution of new M3 strains, particularly in the peak epidemic years of 1995 and 2000. For the first time, scientists were able to unravel, on a genome-wide basis, the complex molecular events underpinning the emergence of new epidemic waves of bacterial infection.

The discoveries should help scientists develop better ways to control GAS infection, including vaccine development and new therapies. GAS infections can range from mild skin infection or strep throat to invasive, life-threatening conditions such as toxic shock syndrome and necrotizing fasciitis. Strep throat, along with minor skin infections, are the most common forms of the disease.

Experts estimate that more than 10 million GAS infections occur every year in the United States. In addition, according to the Centers for Disease Control and Prevention, 9,000 cases of severe GAS disease were reported in 2002.

Ken Pekoc | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>