Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide analysis provides detailed understanding of flesh-eating bacteria epidemics

27.07.2004


New research using nearly a dozen different genomic testing procedures has revealed unprecedented detail about the molecular characteristics and virulence of group A streptococcus (GAS), the "flesh-eating" bacteria, according to scientists at the Rocky Mountain Laboratories (RML), part of the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health.



The study, conducted by an international team led by RML scientist James M. Musser, M.D., Ph.D., will appear in the Proceedings of the National Academy of Sciences online sometime this week.

"This work indicates that using extensive genome-wide molecular analyses is an important new strategy for understanding how and why pathogens emerge," notes NIAID Director Anthony S. Fauci, M.D. "What’s more, the method can be applied to other bacterial and viral pathogens by adjusting the techniques and strategies."


Previous studies, Dr. Musser says, substantially underestimated genetic diversity in bacteria because these studies neither employed the array of molecular techniques they did nor analyzed a comprehensive database of patient samples.

"Before the advent of genome sequencing and genome-wide analysis methods, our knowledge of molecular characteristics of pathogenic bacterial infections in distinct populations was extremely limited," says Dr. Musser.

In the new study, the RML team identified previously unknown genetic distinctions in M3 strains of GAS, revealing why only some strains rapidly expand to cause epidemics. All GAS strains can cause serious infections, Dr. Musser says, but the M3 strains are unusually virulent.

Dr. Musser explains that shortly after 2002, when he and his colleague Stephen Beres, Ph.D., at RML completed a genome sequence of the serotype M3 GAS, they turned their attention to using the new information to molecularly dissect two epidemics of life-threatening GAS infections, or necrotizing fasciitis--the "flesh-eating" syndrome. The study involved analyzing hundreds of patient cultures obtained over 11 years from Ontario, Canada, in epidemiologic studies conducted by Donald Low, M.D., and Allison McGeer, M.D., of the Mount Sinai Hospital in Toronto.

"We proposed an extensive collaboration that would mesh the RML GAS genomic analysis information with the Ontario patient samples and epidemiologic information to provide new understanding of these two GAS epidemics," Dr. Musser says. The Baylor College of Medicine in Houston, with which Dr. Musser is also affiliated, also contributed to the project.

Dr. Musser’s team analyzed a comprehensive sample of GAS cultures collected from patients between 1992 and 2002. Using the new genetic tools, the team discovered previously unknown genetic shifting and the evolution of new M3 strains, particularly in the peak epidemic years of 1995 and 2000. For the first time, scientists were able to unravel, on a genome-wide basis, the complex molecular events underpinning the emergence of new epidemic waves of bacterial infection.

The discoveries should help scientists develop better ways to control GAS infection, including vaccine development and new therapies. GAS infections can range from mild skin infection or strep throat to invasive, life-threatening conditions such as toxic shock syndrome and necrotizing fasciitis. Strep throat, along with minor skin infections, are the most common forms of the disease.

Experts estimate that more than 10 million GAS infections occur every year in the United States. In addition, according to the Centers for Disease Control and Prevention, 9,000 cases of severe GAS disease were reported in 2002.

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>