Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide analysis provides detailed understanding of flesh-eating bacteria epidemics

27.07.2004


New research using nearly a dozen different genomic testing procedures has revealed unprecedented detail about the molecular characteristics and virulence of group A streptococcus (GAS), the "flesh-eating" bacteria, according to scientists at the Rocky Mountain Laboratories (RML), part of the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health.



The study, conducted by an international team led by RML scientist James M. Musser, M.D., Ph.D., will appear in the Proceedings of the National Academy of Sciences online sometime this week.

"This work indicates that using extensive genome-wide molecular analyses is an important new strategy for understanding how and why pathogens emerge," notes NIAID Director Anthony S. Fauci, M.D. "What’s more, the method can be applied to other bacterial and viral pathogens by adjusting the techniques and strategies."


Previous studies, Dr. Musser says, substantially underestimated genetic diversity in bacteria because these studies neither employed the array of molecular techniques they did nor analyzed a comprehensive database of patient samples.

"Before the advent of genome sequencing and genome-wide analysis methods, our knowledge of molecular characteristics of pathogenic bacterial infections in distinct populations was extremely limited," says Dr. Musser.

In the new study, the RML team identified previously unknown genetic distinctions in M3 strains of GAS, revealing why only some strains rapidly expand to cause epidemics. All GAS strains can cause serious infections, Dr. Musser says, but the M3 strains are unusually virulent.

Dr. Musser explains that shortly after 2002, when he and his colleague Stephen Beres, Ph.D., at RML completed a genome sequence of the serotype M3 GAS, they turned their attention to using the new information to molecularly dissect two epidemics of life-threatening GAS infections, or necrotizing fasciitis--the "flesh-eating" syndrome. The study involved analyzing hundreds of patient cultures obtained over 11 years from Ontario, Canada, in epidemiologic studies conducted by Donald Low, M.D., and Allison McGeer, M.D., of the Mount Sinai Hospital in Toronto.

"We proposed an extensive collaboration that would mesh the RML GAS genomic analysis information with the Ontario patient samples and epidemiologic information to provide new understanding of these two GAS epidemics," Dr. Musser says. The Baylor College of Medicine in Houston, with which Dr. Musser is also affiliated, also contributed to the project.

Dr. Musser’s team analyzed a comprehensive sample of GAS cultures collected from patients between 1992 and 2002. Using the new genetic tools, the team discovered previously unknown genetic shifting and the evolution of new M3 strains, particularly in the peak epidemic years of 1995 and 2000. For the first time, scientists were able to unravel, on a genome-wide basis, the complex molecular events underpinning the emergence of new epidemic waves of bacterial infection.

The discoveries should help scientists develop better ways to control GAS infection, including vaccine development and new therapies. GAS infections can range from mild skin infection or strep throat to invasive, life-threatening conditions such as toxic shock syndrome and necrotizing fasciitis. Strep throat, along with minor skin infections, are the most common forms of the disease.

Experts estimate that more than 10 million GAS infections occur every year in the United States. In addition, according to the Centers for Disease Control and Prevention, 9,000 cases of severe GAS disease were reported in 2002.

Ken Pekoc | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>