Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Detection Method Overcomes Problem of Samples with Few Cells

26.07.2004


Finding cancer in a tiny drop of body fluid containing relatively few cells now may be possible with a new method of analyzing multiple genes in small samples of DNA, the cellular building blocks of our genetic code. The molecular test may be especially helpful in detecting cancer cells in breast fluid.



Preliminary tests of the new method, which can detect cancer in a sample with as few as 50 cells, were conducted on a small number of breast tissue samples and are reported in the July 1 issue of Cancer Research. "Our goal is to add a molecular solution to problems in cancer diagnosis where the sample is not adequate or microscopic evaluation of cells is unclear," says Sara Sukumar, Ph.D., the Barbara B. Rubenstein Professor of Oncology at the Johns Hopkins Kimmel Cancer Center. "If additional studies prove the feasibility of this test, it will provide molecular clues to cellular pathology and mammography findings that may help to decide whether cancer is present."

The test, called quantitative multiplex methylation-specific PCR or QM-MSP, works by looking for unusually high levels of molecules embedded by a process called methylation within critical regions of DNA. In this process, small methyl groups regulate DNA’s message-manufacturing process by attaching to the "on" switch of genes. Abnormal levels of methylation improperly turn the gene switch off, which ultimately leads to the loss of critical proteins found in normal cells. This adds to the cascade of genetic events leading to cancer.


"Until now, accurate levels of methylation in many genes at the same time was impossible without repeated tests, and with a small sample, we didn’t have enough DNA to perform all those tests," says Mary Jo Fackler, Ph.D., research associate at the Kimmel Cancer Center and first author of the study. "Now, we’ve taken two existing types of MSP tests and put them together, which minimizes the amount of sample needed."

QM-MSP determines the percentage of methylation present in each of four to five breast cancer genes. The percentages are added together for a cumulative score, which is compared to a threshold value. Levels above the threshold indicate the potential presence of cancer cells and below threshold suggests that the samples are normal.

In the first set of experiments, the Hopkins scientists tested QM-MSP on tissue samples using a panel of genes whose abnormal methylation patterns are known to be associated with breast cancer. The test detected cancer in 84 percent (16 of 19) of breast tumor samples, and found no cancer in 89 percent (eight of nine) normal tissues.

Next, the team tested QM-MSP on breast duct fluid samples obtained through a process called ductal lavage, a saline wash via a catheter threaded through the nipple. Of seven patients at high-risk for breast cancer and no known cancer present, six had no detectable levels of abnormal methylation in their breast cells, and one woman had low levels of abnormal methylation in one gene. QM-MSP detected cancer in two out of four breast cancer patients, which, the investigators say, indicates that this assessment tool holds some promise and is being evaluated in larger studies at Johns Hopkins.

According to the Hopkins team, the QM-MSP technique could be applied to the analysis of methylation in other cancers, such as oral lavage in head and neck, or sputum for lung cancer in which tissue samples are typically small.

This research was funded by the National Cancer Institute, Avon Foundation, Susan G. Komen Foundation, and the Department of Defense.

Other scientists participating in this research are Pedram Argani, M.D., Julie Lange, M.D., Elizabeth Garrett, Ph.D., Megan McVeigh, Jyoti Mehrotra, Ph.D., Marissa A. Blum, and Amanda Lapides from Johns Hopkins University School of Medicine.

| newswise
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>