Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer Detection Method Overcomes Problem of Samples with Few Cells

26.07.2004


Finding cancer in a tiny drop of body fluid containing relatively few cells now may be possible with a new method of analyzing multiple genes in small samples of DNA, the cellular building blocks of our genetic code. The molecular test may be especially helpful in detecting cancer cells in breast fluid.



Preliminary tests of the new method, which can detect cancer in a sample with as few as 50 cells, were conducted on a small number of breast tissue samples and are reported in the July 1 issue of Cancer Research. "Our goal is to add a molecular solution to problems in cancer diagnosis where the sample is not adequate or microscopic evaluation of cells is unclear," says Sara Sukumar, Ph.D., the Barbara B. Rubenstein Professor of Oncology at the Johns Hopkins Kimmel Cancer Center. "If additional studies prove the feasibility of this test, it will provide molecular clues to cellular pathology and mammography findings that may help to decide whether cancer is present."

The test, called quantitative multiplex methylation-specific PCR or QM-MSP, works by looking for unusually high levels of molecules embedded by a process called methylation within critical regions of DNA. In this process, small methyl groups regulate DNA’s message-manufacturing process by attaching to the "on" switch of genes. Abnormal levels of methylation improperly turn the gene switch off, which ultimately leads to the loss of critical proteins found in normal cells. This adds to the cascade of genetic events leading to cancer.


"Until now, accurate levels of methylation in many genes at the same time was impossible without repeated tests, and with a small sample, we didn’t have enough DNA to perform all those tests," says Mary Jo Fackler, Ph.D., research associate at the Kimmel Cancer Center and first author of the study. "Now, we’ve taken two existing types of MSP tests and put them together, which minimizes the amount of sample needed."

QM-MSP determines the percentage of methylation present in each of four to five breast cancer genes. The percentages are added together for a cumulative score, which is compared to a threshold value. Levels above the threshold indicate the potential presence of cancer cells and below threshold suggests that the samples are normal.

In the first set of experiments, the Hopkins scientists tested QM-MSP on tissue samples using a panel of genes whose abnormal methylation patterns are known to be associated with breast cancer. The test detected cancer in 84 percent (16 of 19) of breast tumor samples, and found no cancer in 89 percent (eight of nine) normal tissues.

Next, the team tested QM-MSP on breast duct fluid samples obtained through a process called ductal lavage, a saline wash via a catheter threaded through the nipple. Of seven patients at high-risk for breast cancer and no known cancer present, six had no detectable levels of abnormal methylation in their breast cells, and one woman had low levels of abnormal methylation in one gene. QM-MSP detected cancer in two out of four breast cancer patients, which, the investigators say, indicates that this assessment tool holds some promise and is being evaluated in larger studies at Johns Hopkins.

According to the Hopkins team, the QM-MSP technique could be applied to the analysis of methylation in other cancers, such as oral lavage in head and neck, or sputum for lung cancer in which tissue samples are typically small.

This research was funded by the National Cancer Institute, Avon Foundation, Susan G. Komen Foundation, and the Department of Defense.

Other scientists participating in this research are Pedram Argani, M.D., Julie Lange, M.D., Elizabeth Garrett, Ph.D., Megan McVeigh, Jyoti Mehrotra, Ph.D., Marissa A. Blum, and Amanda Lapides from Johns Hopkins University School of Medicine.

| newswise
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>