Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visiting dental researcher at Case invents new technology

21.07.2004


To aid orthodontists in use of new orthoscrew



The newly Food and Drug Administration-approved orthoscrew--so tiny it is dwarfed by a fingertip--is difficult to place between the narrow spaces of teeth roots and bone.
Young Jin Jeon, a visiting assistant professor at the Case Western Reserve University School of Dental Medicine and an orthodontist from Pusan National University in Korea, developed a new grid device during his yearlong residency at Case that will help orthodontists accurately place and guide the newly approved mini-orthoscrews without damaging the teeth.

Called the JJ Aligner, which looks like a tiny half-inch plastic square of graph paper, is attached by the orthodontist to patient’s jaw and then x-rayed to show where teeth roots and bone are in relations to the grid. After the patient’s gum tissue has been numbed (much like that for a dental filling), the orthodontist will implant the screw using the combination of the x-ray and the grid as a guide. Jeon has a patent pending in Korea on the device. When he returns to Korea at the end of June, he plans to form a company to manufacture the grids for the eventual use in Korea and the United States.



Mark Hans, chair of Case’s department of orthodontics at the dental school, praised the new grid device, saying that the device will allow orthodontists, who are interested in using the orthoscrews to accurately place them between the teeth without damaging the roots of the teeth.

Reducing placement errors which might damage teeth and bones motivated Jeon to design the grid. "Without experience, it is difficult to learn where to put the screws by just looking at an x-ray and the patient’s gums," said Jeon.

Since 1996, Korea has led the development of medical screws in dentistry. The screws are a variation of the surgical steel pins used to piece broken bones together and have a head much like the screws used to anchor wood to a wall.

These screws have been used in Korea for some of the most complex orthodontic cases and can hold wires where teeth may be missing or where the movement of teeth can only take place by using head gear (appliance that has to worn at night that uses the head or back of the neck to assist the orthodontist in moving the teeth).

In the United States, oral surgeons have used a type of dental screw as a post for teeth implants, but those screws permanently remain in place as bone grows around the screw over a six-month period as the anchor to hold the implanted tooth. The mini-screws for orthodontics are designed to be removable and taken out after the teeth have been moved their way into the correct position.

The Case dental school’s orthodontic clinic is among the first in the country to use the new screw technology, said Hans. It currently is being used on one patient.

Hans said he believes the technology will become popular and, in some difficult orthodontic cases, might even eliminate the need for upper jaw surgery.

"The orthoscrews are not used for routine orthodontic cases," added Hans, but only in very complicated ones such as cleft palates or other jaw deformities that require unusual tooth movement and where the screws can replace the head as the anchor. Jeon, who has used the technology for a number of years on his patients in Korea, has seen a reduction in the number of jaw surgeries where the screws can anchor wires in ways that can push or pull teeth in unusual directions.

Susan Griffith | EurekAlert!
Further information:
http://www.case.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>