Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotics gain strength with natural compound

21.07.2004


More and more common antibiotics are losing their effectiveness because they are used too often, allowing bacteria to develop resistance to the drugs. A University of Rhode Island researcher has found a solution to this problem with a natural compound that boosts antibiotic strength from 100 to 1,000 times. While conducting research on infection prevention, URI Microbiology Professor Paul Cohen stumbled upon a compound -- lysophosphatidic acid -- that is naturally produced in the human body in great quantities wherever there is inflammation.



According to Cohen, bacteria are divided into two groups -- Gram-positive and Gram-negative -- based on the structure of their cell walls. When lysophosphatidic acid is administered in small amounts (80 micromolars), it sensitizes the Gram-negative bacteria 100 to 1,000 times so only small quantities of antibiotics are needed to kill the bacteria. When administered to fight Gram-positive bacteria, the compound kills the bacteria without needing any antibiotics.

"In combination with this compound, even older antibiotics become much more powerful," Cohen said. "It not only makes older antibiotics useful again, but it also allows them to be used in reduced dosages."


Lysophosphatidic acid is currently available commercially as a powder for researchers. Cohen holds a patent on its use with antibiotics. He said it can be formulated for a variety of applications, depending on where the infection is found.

"For cystic fibrosis patients, for instance, who often suffer from lung infections, it can be formulated for use as an inhalant. Burn patients or those with acne can use it as a lotion to rub on the skin. It can be applied in many ways," said the Narragansett resident who worked on the project with URI Professor David Laux, former URI technician Maryjane Utley and Danish researcher Karen Krogfelt of the Statenserum Institut in Copenhagen.

Cohen said that since the compound is naturally found in the bloodstream, it is non-toxic and patients should not be allergic to it. "We know it works in the test tube," he said, "but we still need to show that it works on animals. I’m sure that for surface diseases like acne, doctors would use it right away."

Cohen is seeking pharmaceutical-based partners to invest in the project and fund the next stage of research to bring this discovery to market.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>