Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detailed Description of Staph Infection

21.07.2004


The rapid and deadly method that destroys the body’s defenses against the common bacterial cause of disease, Staphylococcus aureus (staph), has been identified by researchers at the University of California, San Diego (UCSD) School of Medicine.



Published online the week of July 19, 2004 in the journal Proceedings of the National Academy of Sciences (PNAS), the study describes the detailed cellular mechanisms by which Staphylococcus aureus protein A, or SpA, spreads within minutes throughout the body to preferentially target specific immune cells, causing those cells to commit suicide, making them unable to stop the staph infection.

Found on the skin and in the noses of healthy people, the staph bacteria is a common cause of minor illnesses such as food poisoning, as well as a major cause of life-threatening blood-borne infections like sepsis, and also serious infections of the bone called osteomyelitis and heart-valve infections called endocarditis. Unfortunately, staph has developed tremendous antibiotic resistance, nd there are no vaccines available.


According to the study’s senior author, Gregg J. Silverman, M.D., UCSD professor of medicine and director of the UCSD Rheumatic Disease Core Center, “we discovered that SpA is especially excellent at killing the B lymphocytes now believed to be central to the immune system defense from bacterial infections like staph. It is also important as these same B cells can be a source in other people of crippling diseases like rheumatoid arthritis and lupus, so this could lead to new therapies to suppress responses that are the cause of autoimmune diseases.”

In the UCSD study, Silverman and post-doctoral fellow Carl S. Goodyear, Ph.D., introduced the SpA toxin to mice. They found that within minutes, the SpA had selectively targeted specific B lymphocytes (only those with certain antigen receptors), but not all B cells. Other cells in the body were not damaged. Within several hours, the targeted B cells were almost completely eliminated in the splenic marginal zone (MZ), which is an important area of the immune system.

Unexpectedly, the team found that a single dose of the SpA toxin was able to suppress the B cells for several months, much longer than they anticipated.

The UCSD study was funded by grants from the National Institutes of Health, the Alliance for Lupus Research, the Cancer Research Institute and the National Blood Foundation.

| newswise
Further information:
http://www.ucsd.edu
http://medicine.ucsd.edu/rdcc/silverman.shtml

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>