Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding About Pathogen in Newborns, May Aid Vaccine Development

21.07.2004


A previously unrecognized molecular structure on the surface of the human bacterial pathogen Group B Streptococcus (GBS) – the most common cause of sepsis and meningitis in newborn infants – is described by researchers at the University of California, San Diego (UCSD) School of Medicine in Proceedings of the National Academy of Sciences published online the week of July 19, 2004.

The new discovery has important implications for understanding the mechanism of infection and the design of vaccines to boost human immunity against this potentially devastating pathogen. For example, potential GBS vaccines currently in clinical trials have been developed without this new knowledge, which could possibly impact their effectiveness.

The findings are a collaborative effort between the laboratories of senior author Ajit Varki, M.D., UCSD professor of medicine and cellular and molecular medicine, and co-director of the UCSD Glycobiology Research and Training Center (GRTC), and Victor Nizet, M.D., associate professor of pediatrics, UCSD Division of Infectious Diseases and an attending physician at Children’s Hospital, San Diego. The two groups have been studying the phenomenon in which certain bacterial pathogens coat their surfaces with a thick capsule made of carbohydrate sugars similar to those found on the surface of human cells. In the case of GBS, the bacterial surface capsule contains sialic acid, a sugar that is also displayed prominently on the surface of all cells in the human body. It is believed that GBS uses sialic acid as a form of “molecular mimicry”, where the bacteria disguises itself to look more like human cells and thereby avoids recognition by the immune system.



Using the sophisticated analytical techniques of the UCSD GRTC facility, graduate student Amanda Lewis discovered that the sialic acid of the GBS capsule contained a chemical modification known as O-acetylation, that had been previously overlooked in more than 30 years of published investigations. O-acetylation was detected in every one of 10 different GBS strains examined, with the overall level of modified sialic acid ranging from 5 percent to 55 percent.

“There are a number of reasons why previous researchers have missed this biochemical structure,” said Varki. “Older detection instruments may have been less sensitive, and some of the harsh chemical treatments employed to purify the capsule are known to destroy O-acetylation.”

He added that “since similar chemical treatments are commonly used to isolate GBS capsule for immunization studies, GBS vaccines in development are missing this component of the true or ‘native’ surface structure of the bacteria.”

In other bacterial pathogens where O-acetylation of surface sugars has been studied, it has been shown that the immune system is able to recognize and generate antibodies that specifically react with the O-acetyl modification. In the case of GBS, this possibility is particularly intriguing.

Varki noted that “an unmodified sialic acid-containing structure resembling the GBS capsule sugar, is present on the surface of all human cells; however, an O-acetylated form of this sugar has never, so far, been reported in humans”.

“This observation may have particular relevance for vaccine design,” Nizet added, “since the elimination of O-acetylation in a GBS vaccine potentially destroys a unique biochemical target for immune protection, inadvertently creating a vaccine antigen that more closely resembles normal human tissue structures”.

The discovery of the UCSD group has implications beyond vaccine design, and may also shed new light on the basic biology of the GBS infection. In previous studies, the presence or absence of O-acetylation on sialic acid has been shown to have important effects on the way the sugar can interact with molecules of the immune system such as antibodies and complement. The researchers are currently investigating whether GBS bacteria may use O-acetylation to vary their surface structure and create a “moving target” which is difficult for the human immune system to recognize.

It is estimated that 20 to 30 percent of women of childbearing age are asymptomatic carriers of GBS on their vaginal mucosal surface. Newborns can become infected with GBS that invade through the placenta to initiate infection in the womb, or alternatively, during delivery by exposure to contaminated vaginal fluids. Despite extensive screening of pregnant women and antibiotic prophylaxis during labor, it is estimated that approximately 3,600 newborns develop invasive GBS infections annually in the United States. In addition to neonatal disease, GBS is increasingly associated with serious infections in adult populations such as pregnant women, diabetics, and the elderly.

“The presence of sialic acid in the GBS surface capsule has long been recognized as a critical virulence factor in disease progression,” said Nizet. “A full appreciation of its biochemical complexity will be critical for development of GBS therapeutic or preventative strategies that target this molecule.”

The study was supported by grants to Varki from the National Institutes of Health (NIH) and to Nizet from the Edward J. Mallinckrodt, Jr. Foundation.

| newswise
Further information:
http://www.ucsd.edu
http://cmm.ucsd.edu/varki/biography.html

More articles from Health and Medicine:

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Introduction of a novel system for in vitro analyses of zebrafish oligodendrocyte progenitor cells

23.10.2017 | Life Sciences

Did you know how many parts of your car require infrared heat?

23.10.2017 | Automotive Engineering

3rd Symposium on Driving Simulation

23.10.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>