Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding About Pathogen in Newborns, May Aid Vaccine Development

21.07.2004


A previously unrecognized molecular structure on the surface of the human bacterial pathogen Group B Streptococcus (GBS) – the most common cause of sepsis and meningitis in newborn infants – is described by researchers at the University of California, San Diego (UCSD) School of Medicine in Proceedings of the National Academy of Sciences published online the week of July 19, 2004.

The new discovery has important implications for understanding the mechanism of infection and the design of vaccines to boost human immunity against this potentially devastating pathogen. For example, potential GBS vaccines currently in clinical trials have been developed without this new knowledge, which could possibly impact their effectiveness.

The findings are a collaborative effort between the laboratories of senior author Ajit Varki, M.D., UCSD professor of medicine and cellular and molecular medicine, and co-director of the UCSD Glycobiology Research and Training Center (GRTC), and Victor Nizet, M.D., associate professor of pediatrics, UCSD Division of Infectious Diseases and an attending physician at Children’s Hospital, San Diego. The two groups have been studying the phenomenon in which certain bacterial pathogens coat their surfaces with a thick capsule made of carbohydrate sugars similar to those found on the surface of human cells. In the case of GBS, the bacterial surface capsule contains sialic acid, a sugar that is also displayed prominently on the surface of all cells in the human body. It is believed that GBS uses sialic acid as a form of “molecular mimicry”, where the bacteria disguises itself to look more like human cells and thereby avoids recognition by the immune system.



Using the sophisticated analytical techniques of the UCSD GRTC facility, graduate student Amanda Lewis discovered that the sialic acid of the GBS capsule contained a chemical modification known as O-acetylation, that had been previously overlooked in more than 30 years of published investigations. O-acetylation was detected in every one of 10 different GBS strains examined, with the overall level of modified sialic acid ranging from 5 percent to 55 percent.

“There are a number of reasons why previous researchers have missed this biochemical structure,” said Varki. “Older detection instruments may have been less sensitive, and some of the harsh chemical treatments employed to purify the capsule are known to destroy O-acetylation.”

He added that “since similar chemical treatments are commonly used to isolate GBS capsule for immunization studies, GBS vaccines in development are missing this component of the true or ‘native’ surface structure of the bacteria.”

In other bacterial pathogens where O-acetylation of surface sugars has been studied, it has been shown that the immune system is able to recognize and generate antibodies that specifically react with the O-acetyl modification. In the case of GBS, this possibility is particularly intriguing.

Varki noted that “an unmodified sialic acid-containing structure resembling the GBS capsule sugar, is present on the surface of all human cells; however, an O-acetylated form of this sugar has never, so far, been reported in humans”.

“This observation may have particular relevance for vaccine design,” Nizet added, “since the elimination of O-acetylation in a GBS vaccine potentially destroys a unique biochemical target for immune protection, inadvertently creating a vaccine antigen that more closely resembles normal human tissue structures”.

The discovery of the UCSD group has implications beyond vaccine design, and may also shed new light on the basic biology of the GBS infection. In previous studies, the presence or absence of O-acetylation on sialic acid has been shown to have important effects on the way the sugar can interact with molecules of the immune system such as antibodies and complement. The researchers are currently investigating whether GBS bacteria may use O-acetylation to vary their surface structure and create a “moving target” which is difficult for the human immune system to recognize.

It is estimated that 20 to 30 percent of women of childbearing age are asymptomatic carriers of GBS on their vaginal mucosal surface. Newborns can become infected with GBS that invade through the placenta to initiate infection in the womb, or alternatively, during delivery by exposure to contaminated vaginal fluids. Despite extensive screening of pregnant women and antibiotic prophylaxis during labor, it is estimated that approximately 3,600 newborns develop invasive GBS infections annually in the United States. In addition to neonatal disease, GBS is increasingly associated with serious infections in adult populations such as pregnant women, diabetics, and the elderly.

“The presence of sialic acid in the GBS surface capsule has long been recognized as a critical virulence factor in disease progression,” said Nizet. “A full appreciation of its biochemical complexity will be critical for development of GBS therapeutic or preventative strategies that target this molecule.”

The study was supported by grants to Varki from the National Institutes of Health (NIH) and to Nizet from the Edward J. Mallinckrodt, Jr. Foundation.

| newswise
Further information:
http://www.ucsd.edu
http://cmm.ucsd.edu/varki/biography.html

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>