Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression patterns may help predict risk and progression of prostate cancer

15.07.2004


According to a study published in the July 15 issue of the Journal of Clinical Oncology, genes expressed in benign tissue adjacent to prostate cancer tissue are much more similar to those expressed in prostate cancer tissue than previously thought. This finding, the first of its kind, may help predict populations both at risk for prostate cancer and for disease progression based on gene expression patterns, say researchers at the University of Pittsburgh.



"It is not clear what molecular events are responsible for the progression of prostate cancer to a lethal form of the disease," said Jian-Hua Luo, M.D., Ph.D., senior author of the study and assistant professor, department of pathology, University of Pittsburgh School of Medicine. "But by exploring the biology of prostate cancer through the identification of genes and patterns of gene expression, we can more precisely understand what genetic changes cause the disease to progress and develop therapeutic targets to prevent its progression at an earlier stage."

In the study, Dr. Luo, also director of the gene array laboratory at the University of Pittsburgh, and colleagues used high throughput quantitative analysis to genetically profile prostate cancer tissue and noncancerous prostate tissue samples. They analyzed 152 human tissue samples including 66 samples of prostate cancer tissue, 60 samples of benign prostate tissue adjacent to the tumor, 23 samples of donor prostate tissue free of genitourinary disease and three prostate cancer cell lines. Through the analysis, the researchers identified a set of 671 genes whose expression levels were significantly altered in prostate cancer tissue compared to disease-free tissue and found that patterns of gene expression in benign adjacent prostate tissue were much more similar to prostate cancer tissue than to disease-free tissue.


According to Dr. Luo, the gene expression patterns of benign adjacent tissue were significantly overlapped with those of prostate cancer and distinctly different than the disease-free tissue. Furthermore, the adjacent tissue was so genetically altered that it resembled a cancer field effect, undergoing genetic changes similar to prostate cancer, even though it was morphologically benign tissue.

"It appears that genetic alterations in the prostate occur in parts of the gland that otherwise look benign," said Joel Nelson, M.D., professor and chairman, department of urology, University of Pittsburgh and co-author of the study. "We have long suspected a so-called field change in the prostate gland containing cancer, meaning some alteration has occurred throughout the prostate tissue. This study lends support for such a hypothesis."

The researchers also created a gene model using GeneSpringTM software to predict the aggressiveness of the disease and found that the expression profile model was more than 80 percent accurate in predicting the aggressiveness of the disease.

"Since only a fraction of prostate cancers are metastatic, identifying variables that predict the behavior of a prostate cancer tumor based on gene expression patterns should prove important in clinical management of the disease," said Dr. Luo. "The results of this study are a first step in that direction."

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>