Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Link established between presence of a key protein and the aggressiveness of prostate cancer

15.07.2004


Prostate cancer is much more likely to be aggressive if a key protein called Stat5 is found activated and in abundance in the cancer cells, report researchers from Georgetown University’s Lombardi Comprehensive Cancer Center. By inhibiting this protein, called Stat5, doctors are exploring how to develop a new treatment strategy for advanced prostate cancer.



The new findings, reported in the July 15th issue of the journal Cancer Research, show that active Stat5 protein is particularly plentiful in high histological grade human prostate cancer. High histological grade prostate cancers have often already metastasized by the time of diagnosis and are typically more aggressive in growth.

"Currently, there are only few treatment options available for advanced prostate cancer," said Marja Nevalainen, MD, PhD, assistant professor of oncology at Georgetown University Lombardi Comprehensive Cancer Center. "If we can find a way to stop Stat5 from turning on in prostate cancer cells, we may be able to devise a new strategy for treating this disease."


Previous studies by Nevalainen show that when the "telephone line" that sends signals to turn Stat5 on is blocked, human prostate cancer cells die. When the line remains open for communication, allowing Stat5 to send cellular signals, prostate cancer cells stay alive and thrive. Nevalainen’s work is focused on finding ways to short-circuit the signals that turn on Stat5, thus killing prostate cells before they flourish.

In this study, human prostate cancer specimens, which are routinely collected during prostate cancer surgeries for analysis of the histological grade of each prostate cancer, were analyzed for activation of Stat5. Activation of Stat5 was then correlated statistically with the histological grade of each specimen.

Nevalainen sees dual possibilities for where the future of Stat 5 research may one day lead: development of potential treatments and identifying whether Stat5 could serve as an effective sign for diagnosing cancer. "We are in the process of determining whether activation of Stat5 in prostate cancer would serve as an effective prognostic biomarker. Development of additional diagnostics, beyond the PSA test, may help physicians on the frontlines of cancer detection."

Lindsey Spindle | EurekAlert!
Further information:
http://www.gumc.georgetown.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>