Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate-based Model to Predict West Nile Virus Activity

15.07.2004


Cornell University scientists are launching a full-scale study on the influence of climate on mosquito populations that transmit diseases such as West Nile virus (WNV) to humans. Funded by a $495,000 Global Programs grant from the National Oceanic and Atmospheric Administration (NOAA), the three-year project is a collaborative effort involving medical entomologists, climatologists, social scientists and risk analysts, as well as local and state health department officials.



"We propose to develop a system for predicting and monitoring risk of mosquito vectors, West Nile virus transmission and human health risk that will be readily usable by public health professionals for decision-making," says Laura Harrington, Cornell assistant professor of entomology and the project’s principal investigator. "This system will provide a mechanism for early warning of West Nile virus risk and serve as a model for other existing and future vector-borne disease risks for which vectors are already present in the United States. These risks include Rift Valley fever, Japanese encephalitis and Ross River viruses."

Arthur T. DeGaetano, Cornell associate professor of climatology and director of the Northeast Regional Climate Center, is a co-principal investigator.


To develop, refine and validate the system, researchers will focus their efforts on New York state, with the view to making the system adaptable to any region. Harrington and DeGaetano hypothesize that a few key climate factors influence and drive WNV transmission dynamics and these key factors can be modeled to accurately predict the risk of WNV transmission to people.

Harrington and Renee R. Anderson, a Cornell Cooperative Extension associate in Cornell’s Department of Entomology, will determine the effects of temperature on development of key West Nile mosquito vectors in the laboratory and under realistic field conditions. DeGaetano will develop a forecasting model based on climate to predict periods of vector and pathogen abundance and human risk. Lois Levitan, a Cornell senior extension associate and Environmental Risk Analysis

Program leader, will determine the information needs of public health and vector control professionals as it relates to risk analysis. Five public health and vector control officials from across New York state will take part in the project, along with Cornell graduate and undergraduate students.

The study will integrate and expand on data acquired during a 2003 NOAA-funded pilot study. Mosquitoes develop in microhabitats, according to Harrington. The correlation of climate data with microhabitat information provides scientific clues to how mosquito populations develop and age. Older mosquitoes are the carriers of WNV, becoming infected when they feed on "reservoir" animals, such as birds, and undergo an incubation period of the virus lasting five to 14 days. During subsequent blood meals after this incubation period, the mosquitoes inject the virus into humans and animals, where it can multiply and sometimes cause illness. Outdoor temperatures determine both the rate the virus replicates in the mosquito and the rate mosquitoes age.

While mosquitoes can live as long as three or four months in a laboratory, their life span in the wild is much shorter. Thanks to predators and pathogens, the longest the average mosquito can live is probably three to four weeks, says Harrington. During the height of summer heat, a mosquito can age and become a full adult within seven to nine days.

Previous efforts to link climate information and mosquito vector management have failed for a variety of reasons, Harrington says.

"By directly addressing and overcoming the reasons why previous models have failed, the unique group of collaborators assembled for this project will gather the data needed to build realistic, validated and effective models for predicting vector activity and human health risk," she says.

| newswise
Further information:
http://www.cornell.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>