Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI analysis shows brain connections that develop last decline first

12.07.2004


Technology opens door for study of cause, treatment of Alzheimer’s

UCLA neuroscientists using a new MRI analysis technique to examine myelin sheaths that insulate the brain’s wiring report that as people age, neural connections that develop last degenerate first. The computer-based analysis method is unique in its ability to examine specific brain structures in living people at millimeter resolution.

Published online by the Neurobiology of Aging earlier this year and scheduled to appear in the August 2004 print edition of the peer-reviewed journal, the study offers new insights into the role of myelin in brain aging and its contribution to the onset of Alzheimer’s disease. In addition, the success of the MRI analysis technique opens new opportunities for studying the impact of lifestyle on brain aging and for developing medications that could slow aging or prevent Alzheimer’s disease.



"The study increases our understanding of the role of myelin in brain development and degeneration, and demonstrates the usefulness of this MRI method for examining the single most powerful risk for Alzheimer’s disease by far - age," said Dr. George Bartzokis, the study’s lead investigator and visiting professor of neurology at the David Geffen School of Medicine at UCLA. He also is director of the UCLA Memory Disorders and Alzheimer’s Disease Clinic and clinical core director of the UCLA Alzheimer’s Disease Research Center.
Myelin is a sheet of lipid, or fat, with very high cholesterol content - the highest of any brain tissue. The high cholesterol content allows myelin to wrap tightly around axons, speeding messages through the brain by insulating these neural "wire" connections.

As the brain continues to develop in adulthood and as myelin is produced in greater and greater quantities, cholesterol levels in the brain grow and eventually promote the production of a toxic protein that together with other toxins attacks the brain. This toxic environment disrupts brain connections and eventually also leads to the brain/mind-destroying plaques and tangles visible years later in the cortex of Alzheimer’s patients.

"The brain is not a computer, it is much more like the Internet," Bartzokis said. "The speed, quality and bandwidth of the connections determine its ability to process information, and all these depend in large part on the insulation that coats the brain’s connecting wires.
"The results of our study show that in older age, the myelin insulation breaks down, resulting in a decline in the speed and efficiency of our Internet. Myelin and the cells that produce it are the most vulnerable component of our brain - the human brain’s Achilles’ heel," he said. "This safe, non-invasive technology can assess the development and degeneration of the brain’s insulation in specific regions. Now that we can measure how brain aging proceeds in vulnerable regions, we can measure what treatments will slow aging down and thus begin in earnest to look at preventing Alzheimer’s disease."

The UCLA research team examined the deterioration of myelin in the brain’s splenium and genu regions of the corpus callosum, which connects the two sides of the brain. Neural connections important to vision develop early in life in the splenium, while connections important to decision making, memory, impulse control and other higher functions develop later in the genu.

The team found that the brain connections deteriorated three times as fast in the genu compared to the splenium. The study also notes that myelin deterioration is far greater throughout the brain of patients with Alzheimer’s disease than in healthy older adults. The late myelinating regions are much more vulnerable and may be why the highest levels of reasoning and new memories are the first to go when one develops Alzheimer’s disease, while movement and vision are unaffected until very late in the disease process.

These findings support the model of Alzheimer’s as a disease driven by myelin breakdown. Bartzokis detailed this model in an article published in the January 2004 edition of the Neurobiology of Aging along with six independent commentaries and his response.

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu
http://neurology.medsch.ucla.edu
http://www.adc.ucla.edu

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>