Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI analysis shows brain connections that develop last decline first

12.07.2004


Technology opens door for study of cause, treatment of Alzheimer’s

UCLA neuroscientists using a new MRI analysis technique to examine myelin sheaths that insulate the brain’s wiring report that as people age, neural connections that develop last degenerate first. The computer-based analysis method is unique in its ability to examine specific brain structures in living people at millimeter resolution.

Published online by the Neurobiology of Aging earlier this year and scheduled to appear in the August 2004 print edition of the peer-reviewed journal, the study offers new insights into the role of myelin in brain aging and its contribution to the onset of Alzheimer’s disease. In addition, the success of the MRI analysis technique opens new opportunities for studying the impact of lifestyle on brain aging and for developing medications that could slow aging or prevent Alzheimer’s disease.



"The study increases our understanding of the role of myelin in brain development and degeneration, and demonstrates the usefulness of this MRI method for examining the single most powerful risk for Alzheimer’s disease by far - age," said Dr. George Bartzokis, the study’s lead investigator and visiting professor of neurology at the David Geffen School of Medicine at UCLA. He also is director of the UCLA Memory Disorders and Alzheimer’s Disease Clinic and clinical core director of the UCLA Alzheimer’s Disease Research Center.
Myelin is a sheet of lipid, or fat, with very high cholesterol content - the highest of any brain tissue. The high cholesterol content allows myelin to wrap tightly around axons, speeding messages through the brain by insulating these neural "wire" connections.

As the brain continues to develop in adulthood and as myelin is produced in greater and greater quantities, cholesterol levels in the brain grow and eventually promote the production of a toxic protein that together with other toxins attacks the brain. This toxic environment disrupts brain connections and eventually also leads to the brain/mind-destroying plaques and tangles visible years later in the cortex of Alzheimer’s patients.

"The brain is not a computer, it is much more like the Internet," Bartzokis said. "The speed, quality and bandwidth of the connections determine its ability to process information, and all these depend in large part on the insulation that coats the brain’s connecting wires.
"The results of our study show that in older age, the myelin insulation breaks down, resulting in a decline in the speed and efficiency of our Internet. Myelin and the cells that produce it are the most vulnerable component of our brain - the human brain’s Achilles’ heel," he said. "This safe, non-invasive technology can assess the development and degeneration of the brain’s insulation in specific regions. Now that we can measure how brain aging proceeds in vulnerable regions, we can measure what treatments will slow aging down and thus begin in earnest to look at preventing Alzheimer’s disease."

The UCLA research team examined the deterioration of myelin in the brain’s splenium and genu regions of the corpus callosum, which connects the two sides of the brain. Neural connections important to vision develop early in life in the splenium, while connections important to decision making, memory, impulse control and other higher functions develop later in the genu.

The team found that the brain connections deteriorated three times as fast in the genu compared to the splenium. The study also notes that myelin deterioration is far greater throughout the brain of patients with Alzheimer’s disease than in healthy older adults. The late myelinating regions are much more vulnerable and may be why the highest levels of reasoning and new memories are the first to go when one develops Alzheimer’s disease, while movement and vision are unaffected until very late in the disease process.

These findings support the model of Alzheimer’s as a disease driven by myelin breakdown. Bartzokis detailed this model in an article published in the January 2004 edition of the Neurobiology of Aging along with six independent commentaries and his response.

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu
http://neurology.medsch.ucla.edu
http://www.adc.ucla.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>