Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI analysis shows brain connections that develop last decline first

12.07.2004


Technology opens door for study of cause, treatment of Alzheimer’s

UCLA neuroscientists using a new MRI analysis technique to examine myelin sheaths that insulate the brain’s wiring report that as people age, neural connections that develop last degenerate first. The computer-based analysis method is unique in its ability to examine specific brain structures in living people at millimeter resolution.

Published online by the Neurobiology of Aging earlier this year and scheduled to appear in the August 2004 print edition of the peer-reviewed journal, the study offers new insights into the role of myelin in brain aging and its contribution to the onset of Alzheimer’s disease. In addition, the success of the MRI analysis technique opens new opportunities for studying the impact of lifestyle on brain aging and for developing medications that could slow aging or prevent Alzheimer’s disease.



"The study increases our understanding of the role of myelin in brain development and degeneration, and demonstrates the usefulness of this MRI method for examining the single most powerful risk for Alzheimer’s disease by far - age," said Dr. George Bartzokis, the study’s lead investigator and visiting professor of neurology at the David Geffen School of Medicine at UCLA. He also is director of the UCLA Memory Disorders and Alzheimer’s Disease Clinic and clinical core director of the UCLA Alzheimer’s Disease Research Center.
Myelin is a sheet of lipid, or fat, with very high cholesterol content - the highest of any brain tissue. The high cholesterol content allows myelin to wrap tightly around axons, speeding messages through the brain by insulating these neural "wire" connections.

As the brain continues to develop in adulthood and as myelin is produced in greater and greater quantities, cholesterol levels in the brain grow and eventually promote the production of a toxic protein that together with other toxins attacks the brain. This toxic environment disrupts brain connections and eventually also leads to the brain/mind-destroying plaques and tangles visible years later in the cortex of Alzheimer’s patients.

"The brain is not a computer, it is much more like the Internet," Bartzokis said. "The speed, quality and bandwidth of the connections determine its ability to process information, and all these depend in large part on the insulation that coats the brain’s connecting wires.
"The results of our study show that in older age, the myelin insulation breaks down, resulting in a decline in the speed and efficiency of our Internet. Myelin and the cells that produce it are the most vulnerable component of our brain - the human brain’s Achilles’ heel," he said. "This safe, non-invasive technology can assess the development and degeneration of the brain’s insulation in specific regions. Now that we can measure how brain aging proceeds in vulnerable regions, we can measure what treatments will slow aging down and thus begin in earnest to look at preventing Alzheimer’s disease."

The UCLA research team examined the deterioration of myelin in the brain’s splenium and genu regions of the corpus callosum, which connects the two sides of the brain. Neural connections important to vision develop early in life in the splenium, while connections important to decision making, memory, impulse control and other higher functions develop later in the genu.

The team found that the brain connections deteriorated three times as fast in the genu compared to the splenium. The study also notes that myelin deterioration is far greater throughout the brain of patients with Alzheimer’s disease than in healthy older adults. The late myelinating regions are much more vulnerable and may be why the highest levels of reasoning and new memories are the first to go when one develops Alzheimer’s disease, while movement and vision are unaffected until very late in the disease process.

These findings support the model of Alzheimer’s as a disease driven by myelin breakdown. Bartzokis detailed this model in an article published in the January 2004 edition of the Neurobiology of Aging along with six independent commentaries and his response.

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu
http://neurology.medsch.ucla.edu
http://www.adc.ucla.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>