Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Technology Could Enhance Accuracy of Breast Biopsy


A new technology developed by a research group headed by Nimmi Ramanujam, assistant professor of biomedical engineering at the University of Wisconsin-Madison, will be a "third eye" during breast biopsies and can increase the chance for an accurate clinical diagnosis of breast cancer.

Doctors currently use X-ray or ultrasound - two-dimensional pictures - to guide the biopsy needle into a three-dimensional region. To ensure that they are doing the biopsy at the right spot, they take up to a dozen tissue samples.

"If you’re in the wrong spot and you don’t get the cancer, then you’re basically concluding that this woman doesn’t have a disease that needs to be treated," says Ramanujam.

She says missed diagnoses occur in about 7 percent, or 70,000, of the women who have biopsies. An additional 6 percent of the women who have biopsies must have the procedures repeated because the results are inconclusive.

Ramanujam and graduate students Carmalyn Lubawy and Changfang Zhu are harnessing the power of light to add another dimension of information about the tissue properties at the needle tip. Light can provide structural information such as cell or nuclear size, as well as measurements of hemoglobin oxygenation, vascularity and cellular metabolic rate - all of which are hallmarks of carcinogenesis and can indicate whether the needle has hit the mark, she says.

"These chemical and structural features are intrinsic inside tissue," she says. "They’re not things you have to add, so you don’t have to add any dyes to make it work."

Her group has built fiber-optic probes that doctors easily can thread down the existing hollow biopsy needle to the tip to help them find the right area to sample. The researchers are testing probes in both the near-infrared wavelength, which allows light to go deeper but probes fewer molecules, and UV-visible wavelength range, which allows them to probe a large number of molecules but with limited sampling depth.

Initially, they used the probe to analyze healthy and cancerous tissue samples from patients who underwent surgery and identified cancerous tissue with 90-percent accuracy.

Now, with two grants totaling more than $1.2 million from the National Cancer Institute and National Institute of Biomedical Imaging and Bioengineering, the group will test the probe during biopsies of about 250 patients. At project’s end, the researchers will determine which light wavelength is best, or whether the optimum technology combines the two.

While the fiber-optic probe won’t eliminate the need for a biopsy, it will increase the likelihood that doctors will take a sample from the correct site. And because of improved optical technology, doctors may be able to make diagnoses right away, says Ramanujam.

Additionally, the probe can be made thin enough to fit through an even smaller needle than the standard 1/4-inch size, making an emotionally draining procedure less physically traumatic.

The group is patenting the technology via the Wisconsin Alumni Research Foundation

| newswise
Further information:

More articles from Health and Medicine:

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

nachricht Breakthrough in Mapping Nicotine Addiction Could Help Researchers Improve Treatment
04.10.2016 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>