Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combination of gene therapy and gene silencing prevents neurodegenerative disease

05.07.2004


University of Iowa researchers have shown for the first time that gene therapy delivered to the brains of living mice can prevent the physical symptoms and neurological damage caused by an inherited neurodegenerative disease that is similar to Huntington’s disease (HD).



If the therapeutic approach can be extended to humans, it may provide a treatment for a group of incurable, progressive neurological diseases called polyglutamine-repeat diseases, which include HD and several spinocerebellar ataxias. The study, conducted by scientists at the UI Roy J. and Lucille A. Carver College of Medicine and colleagues at the University of Minnesota and the National Institutes of Health (NIH), appears in the August issue of Nature Medicine and in the journal’s advanced online publication July 4.

"This is the first example of targeted gene silencing of a disease gene in the brains of live animals and it suggests that this approach may eventually be useful for human therapies," said senior study author Beverly Davidson, Ph.D., the Roy J. Carver Chair in Internal Medicine and UI professor of internal medicine, physiology and biophysics, and neurology. "We have had success in tissue culture, but translating those ideas to animal models of disease has been a barrier. We seem to have broken through that barrier."


Davidson and her colleagues used a viral vector (a stripped-down virus) to deliver small fragments of genetic material (RNA) to critical brain cells of mice with a disorder that mimics the human neurodegenerative disease spinocerebellar ataxia 1 (SCA1). The genetic material suppresses the disease-causing SCA1 gene in a process known as RNA interference.

Mice with the SCA1 gene that were treated with the gene therapy had normal movement and coordination. The gene therapy also protected brain cells from the destruction normally caused by the disease and prevented the build-up of protein clumps within the cells. In contrast, mice with the SCA1 disease gene that were not treated developed movement problems and lost brain cells in a manner similar to humans with this condition.

Both SCA1 and Huntington’s disease are members of a group of neurodegenerative disorders caused by a particular type of genetic flaw. In these dominantly inherited diseases, a single mutated gene inherited from either parent produces a protein that is toxic to cells. Thus, a successful therapy must remove or suppress the disease-gene rather than simply add a corrected version.

"Although we know how to put genes into cells, the difficulty we face in treating dominant diseases is how to remove or silence genes," Davidson explained. "With our approach we can marry our gene therapy research using viral vectors with RNA interference."

Silencing the SCA1 gene with RNA interference inhibited the production of a neurotoxic protein, suggesting that this technology may also be helpful against other degenerative neurological diseases caused by neurotoxic proteins, such as Alzheimer’s disease.

In addition to the finding that RNA interference inhibited gene expression to such an extent that it protected the animals against the disease, another important finding was that RNA interference in and of itself does not appear to be toxic to normal brain cells. In the UI study, neither animal behavior nor brain structures were adversely affected by RNA interference gene therapy.

Furthermore, the study revealed that specific properties of different gene therapy vectors can be used to target those cells that are most involved in causing the disease symptoms. In this case, the UI team proved that their gene therapy vector, adeno-associated virus 1, specifically targeted Purkinje cells, which are very important for gait and coordination.

"Choosing the right vector for the right cells could help us limit gene expression to those cells where altering expression will have a beneficial effect," Davidson explained.

Davidson is optimistic about the potential for using RNA interference gene therapy to treat neurological diseases like HD and spinocerebellar ataxias in humans.

"This is among the most important work I have done and I am excited about the prospect of helping to move this approach into clinical trials," she added.

In addition to Davidson, the team included UI researchers: Haibin Xia, Ph.D., and Qinwen Mao, Ph.D., who were co-lead authors of the study; Henry Paulson, M.D., Ph.D.; Steven Eliason; Scott Harper, Ph.D.; and Inês Martins. Harry Orr, Ph.D., at the University of Minnesota, and Linda Yang and Robert Kotin, Ph.D., at the NIH also were part of the team.

Davidson first presented these findings at the American Society of Gene Therapy meeting in May, where it was nominated the top abstract.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu
http://www.uihealthcare.com

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>