Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria spill their guts to aid researchers in quest for new antibiotics

01.07.2004


Protein changes shape to let salts and other solutes in and out of the cell through a process called ’gating’ in order to keep tension on the membrane steady

New findings about a protein that keeps cells alive by opening and closing pores within a cell’s membrane may open the door to the development of new antibiotics. Researchers at UT Southwestern Medical Center at Dallas are studying a protein, called MscL, found in the membrane of the single-cell bacterium Escherichia coli. The protein is essentially an emergency-response valve that changes shape to let salts and other solutes in and out of the cell through a process called "gating" in order to keep tension on the membrane steady. This gating process allows some of the cell’s innards to spill out or liquid from the surrounding environment to rush in.

If this protein – a type of which is found in nearly all microbes – doesn’t function properly, the cell may die. The researchers have refined previous descriptions of MscL, which may have implications for potential drug therapies designed to kill microorganisms. They also developed a novel way to manipulate the protein’s gating, thus killing the bacteria. The findings will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and are available online.



"If you’re looking for targets for drug therapy – and this protein could possibly be one – you need to know what the target looks like and how it functions normally," said Dr. Paul Blount, assistant professor of physiology at UT Southwestern and senior author of the study. "This information may help you predict drug interactions that lead to the desired effect, like killing the organism."

Previous studies on the MscL protein from the bacterium that causes tuberculosis provided the model for what scientists believed was MscL’s structure in its "closed" state. But UT Southwestern researchers led by Dr. Blount found that structure may actually have represented the nearly closed, rather than fully closed, state. Knowing the difference between what the protein’s structure looks like when it is in different conformational states can have important implications if, for example, a scientist is trying to develop a drug that will kill bacteria by interfering with gating.

Dr. Blount and his colleagues developed a new technique to gather information about MscL’s structure and function by monitoring and controlling the channel as it opened and closed. They engineered a mutant E. coli bacterium to contain a substituted amino acid at different sites in the MscL channel protein. When they added a chemical to the environment, the chemical bound to the amino acid, causing, in some instances, the channel protein to change shape, opening the pore inappropriately and killing the cell.

"Not only were we able to examine this protein as it changes shape in a living bacterium, but we also found several sites within the protein that, when modified genetically and chemically, can cause the channel to open inappropriately, thus killing the organism," Dr. Blount said. "If these regions of the protein could be modified pharmacologically, one may have the makings of an antimicrobial agent."

The membrane protein MscL is a mechanosensitive channel protein, a class of proteins that detects mechanical force created by changes in tension in a cell’s membrane. Changes in membrane tension are brought about when the concentration of the fluid surrounding the cell differs from conditions within the cell. In response to changing membrane tension, MscL alters its shape, opening and closing pores in the membrane.

"Mechanosensitive channels such as this change their structure and act as an ’emergency release valve,’ equalizing the conditions on both sides of the cell membrane," Dr. Blount said. "Of course, the ability to detect mechanical forces, whether it is touch, blood pressure or osmotic forces in the kidney, is crucial for essentially all life."

Little is known of how mechanosensors function. Although MscL is the best-studied of these proteins, scientists aren’t in agreement on how the molecule changes its structure as it gates. But, because molecular mechanisms are often conserved, studying the gating mechanism in bacteria may help scientists better understand the process of mechanosensation in humans, Dr. Blount said.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>