Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treat the Cancer, But Take Care to Protect the Heart

30.06.2004


Cancer treatments, including the most commonly used chemotherapy agents as well as the newest biologic and targeted therapy drugs, can harm a patient’s heart, sometimes fatally – but many physicians do not adequately monitor their patients for such damage or manage their care to minimize it.



So say cardiologists at The University of Texas M. D. Anderson Cancer Center, who published, in the June 29 issue of the journal Circulation, the first large scale review detailing cardiovascular complications that often occur in cancer therapy, as well as ways to prevent or treat them.

The study draws on 30 years of experience at M. D. Anderson Cancer Center as well as on the current body of research on the cardiotoxicity of various agents.


The findings are important because both patients and doctors may not be aware of the spectrum of heart problems that can arise from cancer treatment, or know that many of these problems can be managed, says the study’s lead author, Edward T. H. Yeh, M.D., professor and chairman of the Department of Cardiology.

“Many cancer survivors will actually be at greater risk from cardiac disease as from recurrent cancer,” says Yeh. “Now that cancer is often being treated as a chronic, manageable disease, it is critical that this treatment doesn’t substantially weaken a patient’s heart.”

In fact, Yeh and a team of nine other cardiologists from M. D. Anderson found in their review of 29 anticancer agents that there is no class of cancer drug that is free of potential damage to the heart, the organ that seems to be most sensitive to toxic effects of anticancer agents.

Generally speaking, patients at most risk for cardiotoxicity are those who are aged and have other illnesses, such as diabetes or existing heart disease, he says. But cardiotoxicity can occur in any patient, either during treatment or months, even years after treatment.

Even the newest targeted therapies, designed to attack only cancer cells, can cause cardiotoxicity, Yeh says. For example, monoclonal antibody drugs such as Avastin, Erbitux, and Rituxin produce a significant amount of hypertension as well as hypotension in patients. “They seem to have more general toxicity than many other agents, but the problems they produce usually involve changes in blood pressure, which can be easily treated if recognized,” Yeh says.

Some agents, however, are clearly more dangerous, especially in large doses. For example, patients using the common class of chemotherapy drugs known as anthracyclines/anthraquinolones that includes adriamycin should be closely monitored because these agents frequently produce irreversible chronic heart failure or left ventricular dysfunction, says Yeh. “This is probably the most problematic class of anticancer drugs, but with experience, cardiotoxicity can be limited,” he says.

Alkylating agents, another class of common chemotherapy drugs, have other toxic effects. Platinol and Cytoxan, the most widely used alkylating agents, can produce heart problems that range from chronic heart failure to hypertension, if the total dose is high.

Chemotherapy drugs known as “antimetabolites,” which include the widely used agent 5-fluorouracil (5-FU), can produce ischemia, which can lead to heart attacks if not treated. However, heart problems are relatively rare in the “antimicrotubules” class of chemotherapy drugs, of which Taxol is a member.

Other non-chemotherapy drugs noted for their high risk of cardiotoxicity includes Inerleukin-2, which frequently results in hypotension or arrhythmias; Gleevec which can cause heart failure; Trisenox, from which fatal “QT prolongation” can result; and Thalidomide, which can produce a variety of serious heart ailments.

On the other hand, the researchers found that Herceptin is less toxic than generally believed, although it can cause chronic heart failure and left ventricular dysfunction.

“We found a profile of cardiotoxicity for the most often used anticancer drugs, but it is important to know that every patient has different risk factors that will determine how their hearts handle the treatment,” says Yeh. “Monitoring and management is key to surviving cancer with a good and lasting heart.”

The study was funded by the Department of Cardiology at MD Anderson Cancer Center. Co-authors include Michael Ewer, M.D., Ann Tong, M.D., Daniel Lenihan, M.D., S. Wamique Yusuf, M.D., Joseph Swafford, M.D., Christopher Champion, M.D., Jean-Bernard Durand, M.D., Harry Gibbs, M.D., and Alireza Zafarmand, M.D.

| newswise
Further information:
http://www.mdanderson.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>