Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Football Shirt Tells How Tired Players Are On The Pitch

25.06.2004


Footballers could benefit from a new hi-tech shirt that alerts managers to players’ heart rate and hydration levels.



The shirt, which has in-built pulse and sweat monitors was designed by Northumbria University student David Evans.It uses ECG sensors to record the electrical activity of the heart and send signals to a computer on the team bench, alerting managers, coaches and physios to the player’s heart rate and highlighting any abnormal rhythms.

Silicon gel based strips are connected to the top of the players’ backs and react to sweat loss to monitor hydration levels, indicating when a player is fatigued or dehydrated and could need to be substituted.


Additionally, a sensor on the shirtsleeve allows the bench to communicate with players out on the pitch by sending radio waves to a transmitter that gives off a small vibration and alerts the player to look towards the dug-out when necessary.

The information is sent back to a laptop or PDA handheld computer in the dug-out via a small radio-frequency communication panel at the bottom of the shirt, allowing the bench to monitor the team as a whole or select individual players for attention.

The shirt is made from electro-textile materials and can be easily washed.The design has already received interest from sports manufacturers and David hopes that it will be picked up and put into production ready for the 2006 World Cup after it is exhibited at the New Designers exhibition in London next month.

Manchester City fan David, 23, from Woodley in Cheshire, has not only designed the football shirt, he has also turned his attentions to football boots and has designed a boot with a pressure sensitive insole that highlights when the pitch conditions are too hard or soft for the studs which could cause unnecessary pressure and injury to the players.

David, who is studying a Design for Industry degree at Northumbria University, took advice from sports scientists from Northumbria and Liverpool John Moores Universities while coming up with his designs.

He said: “I wanted to look at the possibility of monitoring players out on the pitch and find out when they are at their peak performance levels. If the coach can see that a player’s heart rate is escalating, it could alert them to make a substitution and protect the player when they are most vulnerable.

“I was already interested in designing something along these lines, but when Marc Vivien-Foe had a heart attack on the pitch last year I realised that this was something which could have a real impact on the game.

“Performance can also suffer when players become dehydrated. Loss of fluid is one of the major causes of fatigue in prolonged exercise. The body temperature increases the more we exercise and we start to sweat more to cool down, losing valuable fluids. The physios can monitor the players’ sweat levels and accurately predict when a player needs to up his fluid intake to boost his performance. They can then send a signal to the sensor on the shirtsleeve which will vibrate and lets the player know that someone on the bench wants to communicate with them.

"The shirt monitors how players react in different climates and how quickly they are tiring, so it would be a great help to managers in deciding who needs to be substituted and when."

Andrea Trainer | alfa
Further information:
http://www.northumbria.ac.uk

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>