Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Non-Invasive Method In Lung Diagnostics

24.06.2004


magnetic resonance imaging (MRI) as a non-invasive diagnostic method has been evolving into an attractive alternative to methods which are associated with radiation exposure. This development now also starts to manifest itself in lung perfusion imaging. This was reported by Dr. Christian Fink and colleagues of the Radiology Division of the Deutsches Krebsforschungszentrum (German Cancer Research Center) in a recent issue of the journal Radiology*.

Diagnosis of numerous diseases of the lungs requires precise imaging of lung perfusion. The standard method used is called perfusion scintigraphy. It involves injecting a radioactive substance into a patient’s bloodstream and then making a scan of its distribution in the lungs. An equally precise and absolutely radiation-free method for evaluating lung perfusion now turns out to be magnetic resonance imaging (MRI, also called nuclear magnetic resonance (NMR) scan).

In a comparative study of 7 healthy probands and 20 patients with suspected lung cancer, the researchers compared magnetic resonance imaging to the standard method of perfusion scintigraphy. MRI showed a higher temporal and spatial resolution in lung perfusion imaging and provides the additional advantage of three-dimensional image data, which makes it easier to recognize blood circulation changes. Perfusion defects caused by tumors were recognized with high accuracy. In direct comparison with the standard method, MRI was found to be at least equally good.



It is too early yet for MRI to become a routine clinical method of lung perfusion imaging. The value of the new method first needs to be assessed in larger studies. But the investigators are optimistic that the radiation-free option may turn into the method of choice: “Image resolution in MRI is about twice as high as in perfusion scintigraphy so that we expect a higher detail precision compared to the standard method”, says Fink. Alongside evaluation of perfusion, MRI also provides additional information, e.g. about the anatomy of blood vessels in the lungs and the temporal process of lung perfusion. Thus, it provides insight about both vessel organization and function of blood circulation down to the tiniest branches of the lungs.

The method can be used not only in diagnostics and surgery planning for lung tumor patients. It may in future also be beneficial in non-invasive diagnostics of other lung diseases such as pulmonary embolism, emphysema, and chronic bronchitis. Presently, however, MRI is substantially more expensive than the standard method (approx. 300 euros versus 75 euros per examination), since the remuneration system does not yet take adequate account of innovative methods of this kind.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis, and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research (BMBF) and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>