Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Non-Invasive Method In Lung Diagnostics

24.06.2004


magnetic resonance imaging (MRI) as a non-invasive diagnostic method has been evolving into an attractive alternative to methods which are associated with radiation exposure. This development now also starts to manifest itself in lung perfusion imaging. This was reported by Dr. Christian Fink and colleagues of the Radiology Division of the Deutsches Krebsforschungszentrum (German Cancer Research Center) in a recent issue of the journal Radiology*.

Diagnosis of numerous diseases of the lungs requires precise imaging of lung perfusion. The standard method used is called perfusion scintigraphy. It involves injecting a radioactive substance into a patient’s bloodstream and then making a scan of its distribution in the lungs. An equally precise and absolutely radiation-free method for evaluating lung perfusion now turns out to be magnetic resonance imaging (MRI, also called nuclear magnetic resonance (NMR) scan).

In a comparative study of 7 healthy probands and 20 patients with suspected lung cancer, the researchers compared magnetic resonance imaging to the standard method of perfusion scintigraphy. MRI showed a higher temporal and spatial resolution in lung perfusion imaging and provides the additional advantage of three-dimensional image data, which makes it easier to recognize blood circulation changes. Perfusion defects caused by tumors were recognized with high accuracy. In direct comparison with the standard method, MRI was found to be at least equally good.



It is too early yet for MRI to become a routine clinical method of lung perfusion imaging. The value of the new method first needs to be assessed in larger studies. But the investigators are optimistic that the radiation-free option may turn into the method of choice: “Image resolution in MRI is about twice as high as in perfusion scintigraphy so that we expect a higher detail precision compared to the standard method”, says Fink. Alongside evaluation of perfusion, MRI also provides additional information, e.g. about the anatomy of blood vessels in the lungs and the temporal process of lung perfusion. Thus, it provides insight about both vessel organization and function of blood circulation down to the tiniest branches of the lungs.

The method can be used not only in diagnostics and surgery planning for lung tumor patients. It may in future also be beneficial in non-invasive diagnostics of other lung diseases such as pulmonary embolism, emphysema, and chronic bronchitis. Presently, however, MRI is substantially more expensive than the standard method (approx. 300 euros versus 75 euros per examination), since the remuneration system does not yet take adequate account of innovative methods of this kind.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis, and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research (BMBF) and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>