Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Non-Invasive Method In Lung Diagnostics

24.06.2004


magnetic resonance imaging (MRI) as a non-invasive diagnostic method has been evolving into an attractive alternative to methods which are associated with radiation exposure. This development now also starts to manifest itself in lung perfusion imaging. This was reported by Dr. Christian Fink and colleagues of the Radiology Division of the Deutsches Krebsforschungszentrum (German Cancer Research Center) in a recent issue of the journal Radiology*.

Diagnosis of numerous diseases of the lungs requires precise imaging of lung perfusion. The standard method used is called perfusion scintigraphy. It involves injecting a radioactive substance into a patient’s bloodstream and then making a scan of its distribution in the lungs. An equally precise and absolutely radiation-free method for evaluating lung perfusion now turns out to be magnetic resonance imaging (MRI, also called nuclear magnetic resonance (NMR) scan).

In a comparative study of 7 healthy probands and 20 patients with suspected lung cancer, the researchers compared magnetic resonance imaging to the standard method of perfusion scintigraphy. MRI showed a higher temporal and spatial resolution in lung perfusion imaging and provides the additional advantage of three-dimensional image data, which makes it easier to recognize blood circulation changes. Perfusion defects caused by tumors were recognized with high accuracy. In direct comparison with the standard method, MRI was found to be at least equally good.



It is too early yet for MRI to become a routine clinical method of lung perfusion imaging. The value of the new method first needs to be assessed in larger studies. But the investigators are optimistic that the radiation-free option may turn into the method of choice: “Image resolution in MRI is about twice as high as in perfusion scintigraphy so that we expect a higher detail precision compared to the standard method”, says Fink. Alongside evaluation of perfusion, MRI also provides additional information, e.g. about the anatomy of blood vessels in the lungs and the temporal process of lung perfusion. Thus, it provides insight about both vessel organization and function of blood circulation down to the tiniest branches of the lungs.

The method can be used not only in diagnostics and surgery planning for lung tumor patients. It may in future also be beneficial in non-invasive diagnostics of other lung diseases such as pulmonary embolism, emphysema, and chronic bronchitis. Presently, however, MRI is substantially more expensive than the standard method (approx. 300 euros versus 75 euros per examination), since the remuneration system does not yet take adequate account of innovative methods of this kind.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis, and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research (BMBF) and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>