Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Computer Cluster To Help Heart Health And Cancer Patients

18.06.2004


A new computer cluster funded by the University of Sheffield and located within the Royal Hallamshire Hospital, will help scientists to improve their understanding of how human cells and organs work. This will ultimately lead to more effective ways of treating cardiovascular disease and cancer as well as other diseases. It will also eventually allow doctors to tailor treatment in a way specific to that patient rather than a ‘one-size-fits-all’ approach.



Two of the current uses for the computer are the development of new technologies to increase the effectiveness of drug delivery and improving the accuracy of radiotherapy treatment. On a more fundamental level the computer is being used to establish how cells interact and ‘self-assemble’ to become a particular tissue or organ. This second study will have an impact on our understanding of a variety of organ functions as well as improving our understanding of the behaviour of cancers, cell turnover and wound repair.

Professor Rod Smallwood, who was instrumental in obtaining funding for the Cluster and is running the project on human cell assembly, explains why the new system is important. “The power of the computer cluster will allow us to use real patient data to produce advanced computational models that can test a variety of hypotheses, without the need to perform difficult and expensive experiments in the laboratory. Predictive models can be developed at all levels from gene expression to organ function”


“For example, we can tell the computer the exact biological conditions present when a cell becomes malignant. We can then produce a model of this situation, so that we can see what would happen if one the conditions was altered, and whether that would prevent the malignancy from occurring. Basing the computer inside the Hospital allows us to use these techniques on patient data without compromising the security of that data”

Drs. Rodney Hose and Pat Lawford, of the University’s Medical Physics group, are using the cluster to create models that simulate the cardiovascular system. Using data from medical images, the specific anatomy of an individual patient can be modelled. Dr Hose explains, “Computational tools, developed together with other academic partners and industry under the European funded research initiatives ‘Simbio’, ‘Bloodsim’ and ‘GEMSS’, allow us to examine the cardiovascular system in detail and investigate how the shape of the heart and blood vessels and the speed of blood flow influence disease. These models will help us to design improved medical devices and to predict how the patient could respond to treatment.”

Dr John Fenner, also of the University’s Medical Physics group, is working with NHS colleagues in the Radiosurgery Department to investigate the way the Cluster can be used to improve the accuracy of radiotherapy treatment by using advanced computational models to model the way gamma rays interact with tissue. This joint Trust/University project has European funding and is part of a drive to identify uses for high performance computers in routine clinical practice as well as medical research.

Professor David Barber, Scientific Director of the Sheffield Teaching Hospital’s Department of Medical Imaging and Medical Physics, said, “The cluster will allow us, working with our academic colleagues, to develop new cost effective ways of treating and managing disease. It demonstrates very well the benefits of NHS and University staff working as partners on research and development projects. By bringing together fundamental ideas and practical concerns we can improve provision of health care to patients.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk/mediacentre/2004/216.html

More articles from Health and Medicine:

nachricht Researchers show p300 protein may suppress leukemia in MDS patients
28.03.2017 | University of Miami Miller School of Medicine

nachricht When writing interferes with hearing
28.03.2017 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>