Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK researchers develop way of predicting a woman’s ’reproductive’ age

17.06.2004


UK researchers have shown a strong direct relationship between ovarian volume and the number of primordial follicles (eggs) remaining in the ovaries of women of reproductive age. The measurement of ovarian volume by transvaginal ultrasound will enable an accurate prediction of the age of menopause and hence a woman’s reproductive age.



They say that the possibility of making an accurate assessment of ovarian reserve will revolutionize the care of women seeking assisted conception, those who have had treatment for childhood cancer and women who may want to delay a family for personal or professional reasons.

"In essence, it means we now have the potential to be able to tell a woman how fast her biological clock is ticking and how much time she has before it will run down," said lead author Dr. Hamish Wallace, consultant paediatric oncologist at the Royal Hospital for Sick Children in Edinburgh, Scotland and a senior lecturer at the University of Edinburgh.


The findings are reported today (Thursday 17 June) in Europe’s leading reproductive medicine journal Human Reproduction[1].

The human ovary contains a fixed pool of primordial eggs, which form in the fourth month of pregnancy. They peak at several million in the five-month foetus then start to decline. By birth, this number has already fallen significantly and the decline continues relentlessly. When the number reaches around 25,000 (corresponding to an average age of 37 years) the decline accelerates until numbers are down to around 1,000 follicles in a peri-menopausal woman.

Dr. Hamish Wallace and Dr Thomas Kelsey of the School of Computer Sciences at the University of St Andrews, developed their technique for measuring a woman’s ’bioclock’ by building on other research on follicle decline with age, and the relationship between follicle numbers and ovarian volume. They then applied the latest mathematical and computer models/analysis[2] in such a way that they could describe the follicle population decline for women entering the menopause early or late.

"We already know from published data using transvaginal ultrasound to measure the volume of ovaries, that they shrink as a woman ages," said Dr Wallace. "What we have done is obtain a highly significant correlation between primordial follicle numbers and ovarian volume. We have shown that ovarian volume in women aged from 25 to 51, as measured by tranvaginal ultrasound, may be used to estimate accurately how many follicles (eggs) are left and therefore what is the woman’s ’reproductive age’."

Said Dr. Wallace: "The age of menopause varies from woman to woman and there is currently no reliable test of ovarian reserve for an individual woman that will predict accurately her remaining reproductive life-span. What we have done is to come up with a method that may allow us to predict for a woman (aged 25–50 years) what ovarian reserves she has and at what age she is likely to experience the menopause."

He said they had used two inherent assumptions in their calculations – both shown in other research to be reliable – that variation in age at menopause is due to wide variation in the number of follicles present at birth, and that ovarian volume between the ages of 25 and 50 is directly related to the remaining number of follicles.

The researchers are currently involved in clinical studies on young women successfully treated for cancer (where fertility may be impaired or lost through treatment) in the hope of providing them with more accurate fertility advice allowing them to realistically plan having a family.

They are also setting up long-term studies to follow young healthy women with regular assessments of ovarian volume until they reach the menopause.

"The possibility of providing a direct and easily reproducible assessment of ovarian reserve and reproductive age through the transvaginal measurement of ovarian volume for all interested women would be a real advance," said Dr Wallace. "It opens the door to the possibility of screening women for early ovarian ageing. These women may be at increased risk to their general health from the effects of having an early menopause."


[1] Ovarian reserve and reproductive age may be determined from measurement of ovarian volume by transvaginal sonography. Human Reproduction. DOI:10.1093/humrep/deh285.

[2] A full explanation of the methods used – the Faddy-Gosden model of ovarian follicle decline, the Runge–Kutta numerical method of estimating human oocyte radiosensitivity, and the Maple computer algebra system used to solve the differential equation that expressed the rate of change in the follicle population from birth – is contained in the research paper. Examples of predictions of ovarian volume and reproductive age compared with chronological age are given.

Margaret Willson | EurekAlert!
Further information:
http://www.eshre.com
http://www3.oup.co.uk/eshre/press-release/jul041.pdf

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>