Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK researchers develop way of predicting a woman’s ’reproductive’ age

17.06.2004


UK researchers have shown a strong direct relationship between ovarian volume and the number of primordial follicles (eggs) remaining in the ovaries of women of reproductive age. The measurement of ovarian volume by transvaginal ultrasound will enable an accurate prediction of the age of menopause and hence a woman’s reproductive age.



They say that the possibility of making an accurate assessment of ovarian reserve will revolutionize the care of women seeking assisted conception, those who have had treatment for childhood cancer and women who may want to delay a family for personal or professional reasons.

"In essence, it means we now have the potential to be able to tell a woman how fast her biological clock is ticking and how much time she has before it will run down," said lead author Dr. Hamish Wallace, consultant paediatric oncologist at the Royal Hospital for Sick Children in Edinburgh, Scotland and a senior lecturer at the University of Edinburgh.


The findings are reported today (Thursday 17 June) in Europe’s leading reproductive medicine journal Human Reproduction[1].

The human ovary contains a fixed pool of primordial eggs, which form in the fourth month of pregnancy. They peak at several million in the five-month foetus then start to decline. By birth, this number has already fallen significantly and the decline continues relentlessly. When the number reaches around 25,000 (corresponding to an average age of 37 years) the decline accelerates until numbers are down to around 1,000 follicles in a peri-menopausal woman.

Dr. Hamish Wallace and Dr Thomas Kelsey of the School of Computer Sciences at the University of St Andrews, developed their technique for measuring a woman’s ’bioclock’ by building on other research on follicle decline with age, and the relationship between follicle numbers and ovarian volume. They then applied the latest mathematical and computer models/analysis[2] in such a way that they could describe the follicle population decline for women entering the menopause early or late.

"We already know from published data using transvaginal ultrasound to measure the volume of ovaries, that they shrink as a woman ages," said Dr Wallace. "What we have done is obtain a highly significant correlation between primordial follicle numbers and ovarian volume. We have shown that ovarian volume in women aged from 25 to 51, as measured by tranvaginal ultrasound, may be used to estimate accurately how many follicles (eggs) are left and therefore what is the woman’s ’reproductive age’."

Said Dr. Wallace: "The age of menopause varies from woman to woman and there is currently no reliable test of ovarian reserve for an individual woman that will predict accurately her remaining reproductive life-span. What we have done is to come up with a method that may allow us to predict for a woman (aged 25–50 years) what ovarian reserves she has and at what age she is likely to experience the menopause."

He said they had used two inherent assumptions in their calculations – both shown in other research to be reliable – that variation in age at menopause is due to wide variation in the number of follicles present at birth, and that ovarian volume between the ages of 25 and 50 is directly related to the remaining number of follicles.

The researchers are currently involved in clinical studies on young women successfully treated for cancer (where fertility may be impaired or lost through treatment) in the hope of providing them with more accurate fertility advice allowing them to realistically plan having a family.

They are also setting up long-term studies to follow young healthy women with regular assessments of ovarian volume until they reach the menopause.

"The possibility of providing a direct and easily reproducible assessment of ovarian reserve and reproductive age through the transvaginal measurement of ovarian volume for all interested women would be a real advance," said Dr Wallace. "It opens the door to the possibility of screening women for early ovarian ageing. These women may be at increased risk to their general health from the effects of having an early menopause."


[1] Ovarian reserve and reproductive age may be determined from measurement of ovarian volume by transvaginal sonography. Human Reproduction. DOI:10.1093/humrep/deh285.

[2] A full explanation of the methods used – the Faddy-Gosden model of ovarian follicle decline, the Runge–Kutta numerical method of estimating human oocyte radiosensitivity, and the Maple computer algebra system used to solve the differential equation that expressed the rate of change in the follicle population from birth – is contained in the research paper. Examples of predictions of ovarian volume and reproductive age compared with chronological age are given.

Margaret Willson | EurekAlert!
Further information:
http://www.eshre.com
http://www3.oup.co.uk/eshre/press-release/jul041.pdf

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>