Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK researchers develop way of predicting a woman’s ’reproductive’ age

17.06.2004


UK researchers have shown a strong direct relationship between ovarian volume and the number of primordial follicles (eggs) remaining in the ovaries of women of reproductive age. The measurement of ovarian volume by transvaginal ultrasound will enable an accurate prediction of the age of menopause and hence a woman’s reproductive age.



They say that the possibility of making an accurate assessment of ovarian reserve will revolutionize the care of women seeking assisted conception, those who have had treatment for childhood cancer and women who may want to delay a family for personal or professional reasons.

"In essence, it means we now have the potential to be able to tell a woman how fast her biological clock is ticking and how much time she has before it will run down," said lead author Dr. Hamish Wallace, consultant paediatric oncologist at the Royal Hospital for Sick Children in Edinburgh, Scotland and a senior lecturer at the University of Edinburgh.


The findings are reported today (Thursday 17 June) in Europe’s leading reproductive medicine journal Human Reproduction[1].

The human ovary contains a fixed pool of primordial eggs, which form in the fourth month of pregnancy. They peak at several million in the five-month foetus then start to decline. By birth, this number has already fallen significantly and the decline continues relentlessly. When the number reaches around 25,000 (corresponding to an average age of 37 years) the decline accelerates until numbers are down to around 1,000 follicles in a peri-menopausal woman.

Dr. Hamish Wallace and Dr Thomas Kelsey of the School of Computer Sciences at the University of St Andrews, developed their technique for measuring a woman’s ’bioclock’ by building on other research on follicle decline with age, and the relationship between follicle numbers and ovarian volume. They then applied the latest mathematical and computer models/analysis[2] in such a way that they could describe the follicle population decline for women entering the menopause early or late.

"We already know from published data using transvaginal ultrasound to measure the volume of ovaries, that they shrink as a woman ages," said Dr Wallace. "What we have done is obtain a highly significant correlation between primordial follicle numbers and ovarian volume. We have shown that ovarian volume in women aged from 25 to 51, as measured by tranvaginal ultrasound, may be used to estimate accurately how many follicles (eggs) are left and therefore what is the woman’s ’reproductive age’."

Said Dr. Wallace: "The age of menopause varies from woman to woman and there is currently no reliable test of ovarian reserve for an individual woman that will predict accurately her remaining reproductive life-span. What we have done is to come up with a method that may allow us to predict for a woman (aged 25–50 years) what ovarian reserves she has and at what age she is likely to experience the menopause."

He said they had used two inherent assumptions in their calculations – both shown in other research to be reliable – that variation in age at menopause is due to wide variation in the number of follicles present at birth, and that ovarian volume between the ages of 25 and 50 is directly related to the remaining number of follicles.

The researchers are currently involved in clinical studies on young women successfully treated for cancer (where fertility may be impaired or lost through treatment) in the hope of providing them with more accurate fertility advice allowing them to realistically plan having a family.

They are also setting up long-term studies to follow young healthy women with regular assessments of ovarian volume until they reach the menopause.

"The possibility of providing a direct and easily reproducible assessment of ovarian reserve and reproductive age through the transvaginal measurement of ovarian volume for all interested women would be a real advance," said Dr Wallace. "It opens the door to the possibility of screening women for early ovarian ageing. These women may be at increased risk to their general health from the effects of having an early menopause."


[1] Ovarian reserve and reproductive age may be determined from measurement of ovarian volume by transvaginal sonography. Human Reproduction. DOI:10.1093/humrep/deh285.

[2] A full explanation of the methods used – the Faddy-Gosden model of ovarian follicle decline, the Runge–Kutta numerical method of estimating human oocyte radiosensitivity, and the Maple computer algebra system used to solve the differential equation that expressed the rate of change in the follicle population from birth – is contained in the research paper. Examples of predictions of ovarian volume and reproductive age compared with chronological age are given.

Margaret Willson | EurekAlert!
Further information:
http://www.eshre.com
http://www3.oup.co.uk/eshre/press-release/jul041.pdf

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>