Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal chromosomes forecast leukemia relapse

17.06.2004


Patients with acute myeloid leukemia (AML) who enter remission with abnormal chromosomes in bone marrow cells are twice as vulnerable to recurrence of their disease as are AML patients with normal bone marrow cells at remission, according to a new study.



The findings by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute call for routine testing for chromosomal abnormalities in AML patients at diagnosis and again when patients enter remission.

If verified, the findings mean that AML patients showing chromosomal abnormalities early during remission should be considered for more intensive treatment, such as a bone marrow transplant, in an attempt to prevent a return of the disease. Patients with normal-looking chromosomes can receive standard therapy.


The findings are published in the June 15 issue of the Journal of Clinical Oncology.

“For the first time, we have shown in a relatively large group of patients that someone with AML who has abnormal chromosomes early during remission will relapse, even if blood counts and other parameters are favorable,” says first author Guido Marcucci, associate professor of internal medicine and a hematologist/oncologist with OSU’s James Cancer Hospital.

Since 1990, physicians have said that AML patients were in complete remission following treatment if their blood count was normal, and their bone marrow contained fewer than 5 percent of immature cells known as blasts.

By that definition, 60 percent to 70 percent of AML patients achieve complete remission, but only 30 percent to 40 percent of those patients remain in remission long enough to be considered completely cured of their disease.

“Achieving complete remission is an important step for a successful treatment,” Marcucci says, “but it does not predict who will do well in the long run and who will relapse. We need additional diagnostic indicators like the presence of abnormal chromosomes.”

The study of abnormal chromosomes is known as cytogenetics. Chromosomal, or cytogenetic, abnormalities are seen at diagnosis in about 55 percent of all AML patients. The remaining 45 percent have normal-looking chromosomes, or normal cytogenetics.

The presence of cytogenetic abnormalities at diagnosis has long proven to be one of the most important prognostic factors for AML. Furthermore, the sensitive technology and methods needed for cytogenetic testing, which were formerly found mainly in research laboratories, are now widely available for use in clinical tests.

This retrospective study examined the outcomes of 118 AML patients who had received cytogenetic testing at the time of diagnosis and at the first day of complete remission.

Of these, 103 patients had abnormal chromosomes at diagnosis and normal chromosomes at complete remission. These patients were compared to 15 others who had abnormal chromosomes at both diagnosis and at complete remission.

The results showed that patients with abnormal chromosomes at remission had a significantly shorter survival. They were twice as likely to relapse and die.

Based on their findings, the researchers concluded that converting from abnormal chromosomes to normal chromosomes at remission is an import predictor of long-term outcome in AML, and supports the use of cytogenetics testing at remission

“These findings indicate that the old definition of remission isn’t good enough,” Marcucci says. “We need to include cytogenetic complete remission as a criterion for complete remission in AML.”

Funding from the National Cancer Institute supported this research.


Contact: Darrell E. Ward, Medical Center Communications, 614-293-3737, or Ward-15@medctr.osu.edu

Darrell E. Ward | Ohio State University
Further information:
http://researchnews.osu.edu/archive/amlchrom.htm

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>