Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal chromosomes forecast leukemia relapse

17.06.2004


Patients with acute myeloid leukemia (AML) who enter remission with abnormal chromosomes in bone marrow cells are twice as vulnerable to recurrence of their disease as are AML patients with normal bone marrow cells at remission, according to a new study.



The findings by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute call for routine testing for chromosomal abnormalities in AML patients at diagnosis and again when patients enter remission.

If verified, the findings mean that AML patients showing chromosomal abnormalities early during remission should be considered for more intensive treatment, such as a bone marrow transplant, in an attempt to prevent a return of the disease. Patients with normal-looking chromosomes can receive standard therapy.


The findings are published in the June 15 issue of the Journal of Clinical Oncology.

“For the first time, we have shown in a relatively large group of patients that someone with AML who has abnormal chromosomes early during remission will relapse, even if blood counts and other parameters are favorable,” says first author Guido Marcucci, associate professor of internal medicine and a hematologist/oncologist with OSU’s James Cancer Hospital.

Since 1990, physicians have said that AML patients were in complete remission following treatment if their blood count was normal, and their bone marrow contained fewer than 5 percent of immature cells known as blasts.

By that definition, 60 percent to 70 percent of AML patients achieve complete remission, but only 30 percent to 40 percent of those patients remain in remission long enough to be considered completely cured of their disease.

“Achieving complete remission is an important step for a successful treatment,” Marcucci says, “but it does not predict who will do well in the long run and who will relapse. We need additional diagnostic indicators like the presence of abnormal chromosomes.”

The study of abnormal chromosomes is known as cytogenetics. Chromosomal, or cytogenetic, abnormalities are seen at diagnosis in about 55 percent of all AML patients. The remaining 45 percent have normal-looking chromosomes, or normal cytogenetics.

The presence of cytogenetic abnormalities at diagnosis has long proven to be one of the most important prognostic factors for AML. Furthermore, the sensitive technology and methods needed for cytogenetic testing, which were formerly found mainly in research laboratories, are now widely available for use in clinical tests.

This retrospective study examined the outcomes of 118 AML patients who had received cytogenetic testing at the time of diagnosis and at the first day of complete remission.

Of these, 103 patients had abnormal chromosomes at diagnosis and normal chromosomes at complete remission. These patients were compared to 15 others who had abnormal chromosomes at both diagnosis and at complete remission.

The results showed that patients with abnormal chromosomes at remission had a significantly shorter survival. They were twice as likely to relapse and die.

Based on their findings, the researchers concluded that converting from abnormal chromosomes to normal chromosomes at remission is an import predictor of long-term outcome in AML, and supports the use of cytogenetics testing at remission

“These findings indicate that the old definition of remission isn’t good enough,” Marcucci says. “We need to include cytogenetic complete remission as a criterion for complete remission in AML.”

Funding from the National Cancer Institute supported this research.


Contact: Darrell E. Ward, Medical Center Communications, 614-293-3737, or Ward-15@medctr.osu.edu

Darrell E. Ward | Ohio State University
Further information:
http://researchnews.osu.edu/archive/amlchrom.htm

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>