Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study investigates breast cancer resistance to tamoxifen and possible way to reverse it

16.06.2004


A new study has found a possible mechanism for tamoxifen resistance in breast cancer and provides evidence that another cancer drug--gefitinib (Iressa)--may be able to restore tamoxifen’s anticancer activity. The study appears in the June 16 issue of the Journal of the National Cancer Institute.



Although adjuvant tamoxifen can reduce the risk of death for women with invasive breast cancer by about 15% over 10 to 15 years, many women do not receive any benefit from the drug. Even among patients most likely to benefit from tamoxifen--those with tumors that express the drug’s target, the estrogen receptor (ER)--only 40% to 50% actually benefit. Studies have shown that patients with ER-positive tumors that express high levels of HER2/neu and the ER coactivator AIB1 often develop tamoxifen resistance, but the mechanism of the resistance has not been identified.

To find this mechanism, Rachel Schiff, Ph.D. and C. Kent Osborne, M.D., of the Baylor College of Medicine in Houston, and colleagues studied molecular interactions in breast cancer cells that expressed high levels of both HER2 and AIB1. They found that, in these cells, tamoxifen acted like an estrogen agonist and stimulated tumor growth. However, when the breast cancer cells were treated with the receptor tyrosine kinase inhibitor gefitinib, tamoxifen once again acted as an estrogen antagonist and tumor growth was blocked.


"Our data imply that monotherapy with growth factor pathway inhibitors like gefitinib may have little or only modest benefits on ER-positive, HER2-overexpressing breast cancer, but the results do provide a strong rationale for combining tamoxifen with gefitinib or other EGFR/HER2 pathway inhibitors to overcome … resistance in such tumors. Clinical trials of this new strategy are under way," the authors write.

In an editorial, Daniel F. Hayes, M.D., of the University of Michigan Health System in Ann Arbor, reviews tamoxifen’s potential for both harm and good in breast cancer patients. "It is imperative that we now take advantage of the advances in understanding of the biology of these … systems to efficiently select optimal treatment and even further reduce mortality of patients with breast cancer," he writes, adding that "[t]hese steps can only be taken by conducting well-designed clinical trials."

Sarah L. Zielinski | EurekAlert!
Further information:
http://jncicancerspectrum.oupjournals.org/.

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>