Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study investigates breast cancer resistance to tamoxifen and possible way to reverse it

16.06.2004


A new study has found a possible mechanism for tamoxifen resistance in breast cancer and provides evidence that another cancer drug--gefitinib (Iressa)--may be able to restore tamoxifen’s anticancer activity. The study appears in the June 16 issue of the Journal of the National Cancer Institute.



Although adjuvant tamoxifen can reduce the risk of death for women with invasive breast cancer by about 15% over 10 to 15 years, many women do not receive any benefit from the drug. Even among patients most likely to benefit from tamoxifen--those with tumors that express the drug’s target, the estrogen receptor (ER)--only 40% to 50% actually benefit. Studies have shown that patients with ER-positive tumors that express high levels of HER2/neu and the ER coactivator AIB1 often develop tamoxifen resistance, but the mechanism of the resistance has not been identified.

To find this mechanism, Rachel Schiff, Ph.D. and C. Kent Osborne, M.D., of the Baylor College of Medicine in Houston, and colleagues studied molecular interactions in breast cancer cells that expressed high levels of both HER2 and AIB1. They found that, in these cells, tamoxifen acted like an estrogen agonist and stimulated tumor growth. However, when the breast cancer cells were treated with the receptor tyrosine kinase inhibitor gefitinib, tamoxifen once again acted as an estrogen antagonist and tumor growth was blocked.


"Our data imply that monotherapy with growth factor pathway inhibitors like gefitinib may have little or only modest benefits on ER-positive, HER2-overexpressing breast cancer, but the results do provide a strong rationale for combining tamoxifen with gefitinib or other EGFR/HER2 pathway inhibitors to overcome … resistance in such tumors. Clinical trials of this new strategy are under way," the authors write.

In an editorial, Daniel F. Hayes, M.D., of the University of Michigan Health System in Ann Arbor, reviews tamoxifen’s potential for both harm and good in breast cancer patients. "It is imperative that we now take advantage of the advances in understanding of the biology of these … systems to efficiently select optimal treatment and even further reduce mortality of patients with breast cancer," he writes, adding that "[t]hese steps can only be taken by conducting well-designed clinical trials."

Sarah L. Zielinski | EurekAlert!
Further information:
http://jncicancerspectrum.oupjournals.org/.

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>