Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research discovery identifies new strategy against diabetes

16.06.2004


UCSF scientists have identified a protein on T cells of the immune system that triggers type 1 diabetes in mice when it interacts with another protein in the pancreas. They have shown that blocking the interaction prevents development of diabetes without weakening normal immune defenses or causing measurable side effects. The success provides a promising strategy against human type 1 diabetes, since the T cell protein has a counterpart in the human immune system, the scientists say.



The research is being published online June 15 by the journal Immunity.

The T cell protein, known as NKG2D, is a receptor on the surface of CD8+ T lymphocytes. The second protein, called RAE-1, has been found on cells infected by bacteria or viruses where it binds to NKG2D, alerting CD8+ T cells and other immune system molecules to attack and eliminate the pathogen.


T cells normally attack and destroy invading pathogens, but in type 1 diabetes, they mistakenly destroy the body’s insulin-producing islet cells.

"We knew that RAE-1 and its immune receptor were involved in anti-pathogen reactions," said Lewis Lanier, PhD, UCSF professor of microbiology and immunology and one of the paper’s senior authors. "The surprising finding is that RAE-1 is present in the pancreas of mice with autoimmune diabetes and if we prevent RAE-1 from binding its receptor on immune cells it can have a profound effect on autoimmunity. And treatment causes no observable side effects."

The researchers showed that treating the mice with an antibody that blocks the interaction of RAE-1 with the NKG2D receptor is completely effective against development of type 1 diabetes, Lanier said.

"You don’t need a calculator to tell the treatment group from the placebo group. It’s 100 percent effective," he said.

In addition to this newly discovered pathway, UCSF scientists have developed other strategies to block autoimmune disease by selectively interfering with receptors present on the surface of T cells. Jeffrey Bluestone, PhD, director of the UCSF Diabetes Center and a senior author with Lanier on the new paper, developed genetically engineered antibodies against CD3, another key T cell receptor that is required to trigger an autoimmune attack. The strategy has helped arrest early stages of human type 1 diabetes and rejection of islet cell transplantations in clinical trials. The treatment produces only minor side effects.

"The aim of selectively blocking molecules of the immune system is to prevent autoimmune disease without destroying all immune defenses -- and with a minimum of side effects, " Bluestone said. "Blocking the NKG2D receptor is even more selective than the anti-CD3 approach. What’s exciting about this finding is that if antibodies against this pathway can be developed into a treatment for human autoimmune disease, it would represent a very specific therapy targeting only a very small population of immune cells most involved in the disease."

The scientists studied diabetes development in "non-obese diabetic" (NOD) mice, considered the gold standard for type 1 diabetes research because disease progression in the mice mirrors the process in humans. In these mice, CD8+ T cells invade the pancreas when the mice are three weeks old, and diabetes develops 10 to 20 weeks later.

The team found that T cells invading the pancreas of the diabetic NOD mice expressed NKG2D and that insulin-producing islet cells in the pancreas produced the RAE-1 protein, promoting T cells to attack the islet cells. Normal, healthy mice did not produce RAE-1 in the pancreas. Treatment with the antibody that blocks RAE-1 from its receptor prevented development of diabetes in the NOD mice, the researchers reported.

The UCSF scientists expect that development of a "humanized" antibody to human NKG2D may provide an effective type 1 diabetes treatment. Other research has recently shown that the NKG2D on T cells may be involved in rheumatoid arthritis, so blocking NKG2D signaling may prove a useful strategy against a number of autoimmune diseases, the scientists conclude.


Lead author on the study is Kouetsu Ogasawara, PhD, a post-doctoral scientist in Lanier’s lab. Co-authors are Jessica A. Hamerman, PhD, and Lauren R. Ehrlich, PhD, postdoctoral fellows in Lanier’s lab; Helene Bour-Jordan, PhD, in the UCSF Diabetes Center; and Pere Santamaria, MD, PhD, professor of microbiology and infectious diseases at the Julia McFarlane Diabetes Research Centre, University of Calgary.

Support for the research was provided the National Institutes of Health, the Juvenile Diabetes Research Foundation and others.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>