Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop blood test that can detect genetic changes in progressive breast cancer

08.06.2004


Researchers at UT Southwestern Medical Center at Dallas have developed a blood test that can detect amplification of a certain gene found in circulating cells associated with breast cancer.



If further clinical studies bear out its effectiveness, researchers say the blood test could be used as a standard operating procedure to monitor genetic changes for which a treatment is available.

"Cancer is a moving target, and the oncologist has to know which bullet to put in his gun," said Dr. Jonathan Uhr, professor of microbiology and internal medicine in the Cancer Immunobiology Center at UT Southwestern and senior author of the study. "Obtaining repeated blood samples is a safe and routine procedure, and this test can help the oncologist determine whether a new genetic change has become dominant and calls for a specific treatment for that change."


Their work will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and is currently available online.

The researchers developed a blood test to optimize the detection and characterization of circulating cancer cells shed from a primary tumor. This is done by matching the cells’ genetic abnormalities with the parent tumor.

The test can detect one circulating tumor cell in 10 million white blood cells, said Dr. Uhr.

The research augments previous work by UT Southwestern researchers to determine if patients whose primary tumor did not have amplification of the gene HER-2 could acquire amplification if the tumor recurred and progressed. Using the new blood test to examine the circulating tumor cells from growing tumors, initial indications are this amplification eventually can occur, Dr. Uhr said.

Dr. Uhr says that in a patient whose primary tumor is classified as HER-2 gene non-amplified, a minute number of tumor cells actually may be HER-2 amplified. With time and selective pressures, this small population expands and becomes the predominant one.

Overexpression of the HER-2 gene occurs in about 20 percent to 25 percent of breast-cancer patients. Prognosis is poor, as the cancer cells often resist radiation therapy and almost all drugs.

However, studies have shown that the drug Herceptin (an antibody to HER-2) can treat tumors with HER-2 amplification by itself in 25 percent of patients and in 50 percent when combined with chemotherapy. The antibody binds to the molecules that are produced by the HER-2 gene and reside on the cancer cells’ surface. The drug neutralizes their effect with far fewer side effects than conventional chemotherapy.

By utilizing this blood test to determine HER-2 gene amplification in circulating cancer cells, doctors may be able to provide Herceptin to certain patients who have acquired such amplification. At present, HER-2 amplification is only diagnosed in the primary tumor.

"The implications of tumor evolution over the course of treatment are significant," said Dr. Debasish Tripathy, professor of internal medicine and contributing author. "A better understanding of this process will not only allow us to use available drugs in a more individualized fashion but also may point to new therapeutic approaches." Dr. Tripathy heads the Komen/UT Southwestern Breast Cancer Research Program.

The next step is to evaluate patients whose circulating tumor cells have acquired HER-2 gene amplification to determine if these cells are reflecting the genetic status of the recurrent tumor, said Dr. Uhr. For the blood test to be considered worthwhile, research also must show that therapy with Herceptin alone or in addition to a chemotherapeutic agent can cause remissions in a significant number of patients.


Other UT Southwestern contributors to the PNAS study were Dr. Raheela Ashfaq, professor of pathology; Dr. Eugene Frenkel, professor of internal medicine; Dr. Marilyn Leitch, professor of surgical oncology; Dr. David Euhus, associate professor of surgical oncology; Dr. Barbara Haley, associate professor of internal medicine; Dr. Cynthia Osborne, assistant professor of internal medicine; Dr. Susan Hoover, assistant professor of surgical oncology; Dr. Edward Clifford, clinical assistant professor of surgery; and in the Cancer Immunobiology Center, Dr. Ellen Vitetta, director; Dr. Songdong Meng, postdoctoral researcher; Dr. Jianqiang Wang, postdoctoral researcher; Thomas Tucker, senior research scientist; and Nancy Lane, research scientist.

Researchers from UT M.D. Anderson Cancer Center; Texas Oncology PA; Dallas Surgical Group; Cancer Center Associates in Dallas; Vysis, Inc.; Wistar Institute; Immunicon Corp.; the Washington University School of Medicine in St. Louis; and Germany’s University of Tubingen also contributed.

Research was supported by the Raymond D. Nasher Cancer Research Program and the Komen/UT Southwestern Breast Cancer Research Program.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

Scott Maier | EurekAlert!
Further information:
http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>