Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop blood test that can detect genetic changes in progressive breast cancer

08.06.2004


Researchers at UT Southwestern Medical Center at Dallas have developed a blood test that can detect amplification of a certain gene found in circulating cells associated with breast cancer.



If further clinical studies bear out its effectiveness, researchers say the blood test could be used as a standard operating procedure to monitor genetic changes for which a treatment is available.

"Cancer is a moving target, and the oncologist has to know which bullet to put in his gun," said Dr. Jonathan Uhr, professor of microbiology and internal medicine in the Cancer Immunobiology Center at UT Southwestern and senior author of the study. "Obtaining repeated blood samples is a safe and routine procedure, and this test can help the oncologist determine whether a new genetic change has become dominant and calls for a specific treatment for that change."


Their work will appear in an upcoming issue of the Proceedings of the National Academy of Sciences and is currently available online.

The researchers developed a blood test to optimize the detection and characterization of circulating cancer cells shed from a primary tumor. This is done by matching the cells’ genetic abnormalities with the parent tumor.

The test can detect one circulating tumor cell in 10 million white blood cells, said Dr. Uhr.

The research augments previous work by UT Southwestern researchers to determine if patients whose primary tumor did not have amplification of the gene HER-2 could acquire amplification if the tumor recurred and progressed. Using the new blood test to examine the circulating tumor cells from growing tumors, initial indications are this amplification eventually can occur, Dr. Uhr said.

Dr. Uhr says that in a patient whose primary tumor is classified as HER-2 gene non-amplified, a minute number of tumor cells actually may be HER-2 amplified. With time and selective pressures, this small population expands and becomes the predominant one.

Overexpression of the HER-2 gene occurs in about 20 percent to 25 percent of breast-cancer patients. Prognosis is poor, as the cancer cells often resist radiation therapy and almost all drugs.

However, studies have shown that the drug Herceptin (an antibody to HER-2) can treat tumors with HER-2 amplification by itself in 25 percent of patients and in 50 percent when combined with chemotherapy. The antibody binds to the molecules that are produced by the HER-2 gene and reside on the cancer cells’ surface. The drug neutralizes their effect with far fewer side effects than conventional chemotherapy.

By utilizing this blood test to determine HER-2 gene amplification in circulating cancer cells, doctors may be able to provide Herceptin to certain patients who have acquired such amplification. At present, HER-2 amplification is only diagnosed in the primary tumor.

"The implications of tumor evolution over the course of treatment are significant," said Dr. Debasish Tripathy, professor of internal medicine and contributing author. "A better understanding of this process will not only allow us to use available drugs in a more individualized fashion but also may point to new therapeutic approaches." Dr. Tripathy heads the Komen/UT Southwestern Breast Cancer Research Program.

The next step is to evaluate patients whose circulating tumor cells have acquired HER-2 gene amplification to determine if these cells are reflecting the genetic status of the recurrent tumor, said Dr. Uhr. For the blood test to be considered worthwhile, research also must show that therapy with Herceptin alone or in addition to a chemotherapeutic agent can cause remissions in a significant number of patients.


Other UT Southwestern contributors to the PNAS study were Dr. Raheela Ashfaq, professor of pathology; Dr. Eugene Frenkel, professor of internal medicine; Dr. Marilyn Leitch, professor of surgical oncology; Dr. David Euhus, associate professor of surgical oncology; Dr. Barbara Haley, associate professor of internal medicine; Dr. Cynthia Osborne, assistant professor of internal medicine; Dr. Susan Hoover, assistant professor of surgical oncology; Dr. Edward Clifford, clinical assistant professor of surgery; and in the Cancer Immunobiology Center, Dr. Ellen Vitetta, director; Dr. Songdong Meng, postdoctoral researcher; Dr. Jianqiang Wang, postdoctoral researcher; Thomas Tucker, senior research scientist; and Nancy Lane, research scientist.

Researchers from UT M.D. Anderson Cancer Center; Texas Oncology PA; Dallas Surgical Group; Cancer Center Associates in Dallas; Vysis, Inc.; Wistar Institute; Immunicon Corp.; the Washington University School of Medicine in St. Louis; and Germany’s University of Tubingen also contributed.

Research was supported by the Raymond D. Nasher Cancer Research Program and the Komen/UT Southwestern Breast Cancer Research Program.

To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

Scott Maier | EurekAlert!
Further information:
http://www.utsouthwestern.edu/utsw/cda/dept37326/files/37813.html

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>