Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC / Norris Cancer Researchers Show Potential of Fighting Angiogenesis

08.06.2004


Phase I trial shows experimental drug is safe and lowers level of key blood protein



Keck School of Medicine of USC researchers have reported that the antiangiogenesis drug they developed—called Veglin—not only is safe for patients with a wide variety of cancers, but also lowers levels of a key protein that tumors need to grow and stabilizes or even reverses some cancers for a period.

Alexandra M. Levine, M.D., Distinguished Professor of Medicine and chief of hematology at the Keck School of Medicine and medical director of the USC/Norris Cancer Hospital, presented results from the ongoing Veglin trial at the 40th Annual Meeting of the American Society of Clinical Oncology this past weekend.


“Veglin continues to show its safety, even though we’ve escalated the dose significantly. Blood levels of key enzymes we are targeting also have gone down in about 50-percent of the cases, and we are pleased so far,” says Levine, the Ronald H. Bloom Family Chair in Lymphoma at the Keck School.

Veglin originated with USC/Norris Comprehensive Cancer Center researcher Parkash Gill, M.D., Keck School professor of medicine. Los Angeles, Calif.-based VasGene Therapeutics Inc., which was co-founded by Gill, now leads its development.

In 2003, a team of USC/Norris scientists opened a phase I trial of Veglin for patients with any malignancy that failed to respond to previous treatment. The study evaluates the safety of the drug at increasing doses and examines response. So far, researchers have increased the dosage tenfold, with no significant toxic side effects seen.

Nearly three quarters of the 35 patients who have participated in the clinical trial so far have had solid tumors of the kidneys, colon or lung, or cancers such as melanoma or sarcoma. More than a quarter of the patients have had hematologic cancers, such as lymphoma, Kaposi’s sarcoma and myeloma.

Veglin clinically and visibly reduced cancerous tissue for several months in cases of Kaposi’s sarcoma and cutaneous T-cell lymphoma, researchers reported. Patients with lymphoma, bronchoalveolar carcinoma, renal cell carcinoma, multiple myeloma and chondrosarcoma also saw disease stabilization or other clinical benefits from the drug.

The drug targets a family of proteins called vascular endothelial growth factors, or VEGF.

Cancer cells develop rapidly and need an ever-increasing blood supply, researchers explain. As a result, tumors must encourage new blood vessels to develop around them—a process called angiogenesis. VEGF is critical to the growth of these new blood vessels.

But that is not all. VEGF also directly helps certain cancers grow.

“VEGF serves as an autocrine growth factor for certain types of cancers,” Levine says. “The analogy would be the following: If a car were able to make its own gasoline, it would drive forever. The gasoline for the cancer cell is VEGF; it is made by the cancer cell, and comes back to work on the cancer cell that made it, causing the cancer cell to divide and proliferate.”

Veglin is meant to counteract that. Called an antisense oligonucleotide, Veglin is a bit of DNA that binds directly to the gene that produces VEGF—essentially plugging it.

Researchers hope that if Veglin can keep tumor cells from producing VEGF, it will block their growth and metastasis, while also killing the cancer cells themselves.

Patients in the trial receive Veglin intravenously over two hours, for five straight days. They then get a week off. This cycle continues for four months.

Veglin lowered blood levels of a form of VEGF, called VEGF-A, in 47 percent of participants. It also lowered levels of VEGF-C in 21 percent of participants.

In addition to Kaposi’s sarcoma and cutaneous T-cell lymphoma patients, whose cancer growth was reversed for several months, other patients saw clinical benefits, too. Veglin stabilized cancer levels in patients with renal cell cancer for two or more months, chondrosarcoma for five months and bronchoalveolar carcinoma for more than seven months.

“We have seen tumor shrinkage and stabilization in diverse disease types. These are good indications for a single agent,” Levine says. “In the future, optimally we would combine it with other drugs.”

Researchers are now planning phase II clinical trials for patients with renal cell carcinoma, mesothelioma, leukemia and lymphoma. Studies will initially begin at USC/Norris, with additional centers added later.


Alexandra M. Levine, David I. Quinn, Gerry Gorospe, Heinz-Josef Lenz, Anil Tulpule and Parkash S. Gill, “Phase I Trial of Antisense Oligonucleotide against Vascular Endothelial Growth Factor (VEGF-AS, Veglin) in Relapsed and Refractory Malignancies,” 40th Annual Meeting of the American Society of Clinical Oncology, New Orleans, La., June 3-8, 2004.

Jon Weiner | USC
Further information:
http://www.usc.edu/

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>