Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC / Norris Cancer Researchers Show Potential of Fighting Angiogenesis

08.06.2004


Phase I trial shows experimental drug is safe and lowers level of key blood protein



Keck School of Medicine of USC researchers have reported that the antiangiogenesis drug they developed—called Veglin—not only is safe for patients with a wide variety of cancers, but also lowers levels of a key protein that tumors need to grow and stabilizes or even reverses some cancers for a period.

Alexandra M. Levine, M.D., Distinguished Professor of Medicine and chief of hematology at the Keck School of Medicine and medical director of the USC/Norris Cancer Hospital, presented results from the ongoing Veglin trial at the 40th Annual Meeting of the American Society of Clinical Oncology this past weekend.


“Veglin continues to show its safety, even though we’ve escalated the dose significantly. Blood levels of key enzymes we are targeting also have gone down in about 50-percent of the cases, and we are pleased so far,” says Levine, the Ronald H. Bloom Family Chair in Lymphoma at the Keck School.

Veglin originated with USC/Norris Comprehensive Cancer Center researcher Parkash Gill, M.D., Keck School professor of medicine. Los Angeles, Calif.-based VasGene Therapeutics Inc., which was co-founded by Gill, now leads its development.

In 2003, a team of USC/Norris scientists opened a phase I trial of Veglin for patients with any malignancy that failed to respond to previous treatment. The study evaluates the safety of the drug at increasing doses and examines response. So far, researchers have increased the dosage tenfold, with no significant toxic side effects seen.

Nearly three quarters of the 35 patients who have participated in the clinical trial so far have had solid tumors of the kidneys, colon or lung, or cancers such as melanoma or sarcoma. More than a quarter of the patients have had hematologic cancers, such as lymphoma, Kaposi’s sarcoma and myeloma.

Veglin clinically and visibly reduced cancerous tissue for several months in cases of Kaposi’s sarcoma and cutaneous T-cell lymphoma, researchers reported. Patients with lymphoma, bronchoalveolar carcinoma, renal cell carcinoma, multiple myeloma and chondrosarcoma also saw disease stabilization or other clinical benefits from the drug.

The drug targets a family of proteins called vascular endothelial growth factors, or VEGF.

Cancer cells develop rapidly and need an ever-increasing blood supply, researchers explain. As a result, tumors must encourage new blood vessels to develop around them—a process called angiogenesis. VEGF is critical to the growth of these new blood vessels.

But that is not all. VEGF also directly helps certain cancers grow.

“VEGF serves as an autocrine growth factor for certain types of cancers,” Levine says. “The analogy would be the following: If a car were able to make its own gasoline, it would drive forever. The gasoline for the cancer cell is VEGF; it is made by the cancer cell, and comes back to work on the cancer cell that made it, causing the cancer cell to divide and proliferate.”

Veglin is meant to counteract that. Called an antisense oligonucleotide, Veglin is a bit of DNA that binds directly to the gene that produces VEGF—essentially plugging it.

Researchers hope that if Veglin can keep tumor cells from producing VEGF, it will block their growth and metastasis, while also killing the cancer cells themselves.

Patients in the trial receive Veglin intravenously over two hours, for five straight days. They then get a week off. This cycle continues for four months.

Veglin lowered blood levels of a form of VEGF, called VEGF-A, in 47 percent of participants. It also lowered levels of VEGF-C in 21 percent of participants.

In addition to Kaposi’s sarcoma and cutaneous T-cell lymphoma patients, whose cancer growth was reversed for several months, other patients saw clinical benefits, too. Veglin stabilized cancer levels in patients with renal cell cancer for two or more months, chondrosarcoma for five months and bronchoalveolar carcinoma for more than seven months.

“We have seen tumor shrinkage and stabilization in diverse disease types. These are good indications for a single agent,” Levine says. “In the future, optimally we would combine it with other drugs.”

Researchers are now planning phase II clinical trials for patients with renal cell carcinoma, mesothelioma, leukemia and lymphoma. Studies will initially begin at USC/Norris, with additional centers added later.


Alexandra M. Levine, David I. Quinn, Gerry Gorospe, Heinz-Josef Lenz, Anil Tulpule and Parkash S. Gill, “Phase I Trial of Antisense Oligonucleotide against Vascular Endothelial Growth Factor (VEGF-AS, Veglin) in Relapsed and Refractory Malignancies,” 40th Annual Meeting of the American Society of Clinical Oncology, New Orleans, La., June 3-8, 2004.

Jon Weiner | USC
Further information:
http://www.usc.edu/

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>