Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic vaccine promising against chronic hepatitis C

07.06.2004


A potential vaccine candidate against chronic hepatitis C (HCV) infections is presented in a thesis from Karolinska Institutet. The new genetic vaccine can activate immune responses that are needed to clear HCV, a disease that today is difficult to treat effectively.



The hepatitis C virus (HCV) is a major cause of chronic liver disease worldwide. It is estimated that HCV affects approximately 170 million people around the world. Today, no vaccine is available to prevent or cure HCV infections. Antiviral therapy is used quite effectively, but in 60-80 per cent of the patients become chronic carriers of the virus in their liver. One feature of HCV infection is the high rate of viral persistence. The mechanism of viral persistence is largely unknown, although the high genetic variability is thought to play a key role.

In Lars Frelin’s thesis the HCV NS3 protein is studied in detail since it performs key functions in the viral life cycle. These are unwinding and strand separation of the viral RNA and proteolytic processing of the precursor polyprotein. To obtain the complete protease the NS4A co-factor was included in the NS3-based vaccines. NS4A has been shown to enhance the stability of NS3 and to target the NS3/4A complex to intracellular membranes. The latter is most likely of importance for the formation of the replication complex. Also, the NS3 region has a limited genetic variability and several studies have now demonstrated that NS3-specific CD4+ and CD8+ T-cell responses are crucial for the resolution of HCV infections. Thus, several factors suggest that the NS3 region should be well suited for vaccine development.


The results show that HCV NS3-based genetic vaccines effectively primed both humoral and cellular immune responses in mice. NS3/4A was shown to prime a Th1 CD4+ T-cell response. The inclusion of NS4A in NS3-based vaccines primed antibody, CD4+, and CD8+ T-cell responses that were superior to those primed by NS3-gene alone. Thus, NS4A enhanced the immunogenicity of NS3. The studies also show that enhancement of the immunogenicity was most probably a result of the higher expression levels of NS3 generated by the inclusion of NS4A. Further results show that the overall immunogenicity of NS3/4A could be further enhanced by codon optimization or by mRNA amplification using the Semliki forest virus (SFV) replicon. The NS3 protein expression levels were further improved by either codon optimization and mRNA amplification. Subsequently, both these modifications enhanced the NS3-specific immune responses. One concern in development of genetic vaccines is that the gene displays unwanted properties when expressed in vivo. Therefore, a new transgenic mouse expressing the HCV NS3/4Aprotein in the liver was generated. The protein expression was restricted to the liver to mimic the in vivo situation during a HCV infection. Protein expression was localized to the cytoplasm of the hepatocytes and displayed a similar staining pattern as seen in hepatocytes from HCV infected individuals. The intrahepatic protein expression did not cause overt liver damage, except for a slight enlargement of the liver. However, the NS3/4A-transgenic mice displayed less spontaneously appearing intrahepatic inflammatory foci, which are commonly found in laboratory mice. Thus, expression of NS3/4A-protein may affect the distribution of immune cells within the liver.

The present studies demonstrate that NS3/4A-based genetic vaccines effectively prime humoral and cellular immune responses. Intra-hepatic expression of NS3/4A did not cause any spontaneous liver disease or overt pathology suggesting that it safely can be used in genetic vaccines. Thus, the NS3/4A gene can safely activate immune responses that are similar to those found in humans who can clear HCV. The NS3/4A should therefore be a potential vaccine candidate against chronic HCV infections.

Ulla Bredberg-Radén | alfa

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>