Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic vaccine promising against chronic hepatitis C

07.06.2004


A potential vaccine candidate against chronic hepatitis C (HCV) infections is presented in a thesis from Karolinska Institutet. The new genetic vaccine can activate immune responses that are needed to clear HCV, a disease that today is difficult to treat effectively.



The hepatitis C virus (HCV) is a major cause of chronic liver disease worldwide. It is estimated that HCV affects approximately 170 million people around the world. Today, no vaccine is available to prevent or cure HCV infections. Antiviral therapy is used quite effectively, but in 60-80 per cent of the patients become chronic carriers of the virus in their liver. One feature of HCV infection is the high rate of viral persistence. The mechanism of viral persistence is largely unknown, although the high genetic variability is thought to play a key role.

In Lars Frelin’s thesis the HCV NS3 protein is studied in detail since it performs key functions in the viral life cycle. These are unwinding and strand separation of the viral RNA and proteolytic processing of the precursor polyprotein. To obtain the complete protease the NS4A co-factor was included in the NS3-based vaccines. NS4A has been shown to enhance the stability of NS3 and to target the NS3/4A complex to intracellular membranes. The latter is most likely of importance for the formation of the replication complex. Also, the NS3 region has a limited genetic variability and several studies have now demonstrated that NS3-specific CD4+ and CD8+ T-cell responses are crucial for the resolution of HCV infections. Thus, several factors suggest that the NS3 region should be well suited for vaccine development.


The results show that HCV NS3-based genetic vaccines effectively primed both humoral and cellular immune responses in mice. NS3/4A was shown to prime a Th1 CD4+ T-cell response. The inclusion of NS4A in NS3-based vaccines primed antibody, CD4+, and CD8+ T-cell responses that were superior to those primed by NS3-gene alone. Thus, NS4A enhanced the immunogenicity of NS3. The studies also show that enhancement of the immunogenicity was most probably a result of the higher expression levels of NS3 generated by the inclusion of NS4A. Further results show that the overall immunogenicity of NS3/4A could be further enhanced by codon optimization or by mRNA amplification using the Semliki forest virus (SFV) replicon. The NS3 protein expression levels were further improved by either codon optimization and mRNA amplification. Subsequently, both these modifications enhanced the NS3-specific immune responses. One concern in development of genetic vaccines is that the gene displays unwanted properties when expressed in vivo. Therefore, a new transgenic mouse expressing the HCV NS3/4Aprotein in the liver was generated. The protein expression was restricted to the liver to mimic the in vivo situation during a HCV infection. Protein expression was localized to the cytoplasm of the hepatocytes and displayed a similar staining pattern as seen in hepatocytes from HCV infected individuals. The intrahepatic protein expression did not cause overt liver damage, except for a slight enlargement of the liver. However, the NS3/4A-transgenic mice displayed less spontaneously appearing intrahepatic inflammatory foci, which are commonly found in laboratory mice. Thus, expression of NS3/4A-protein may affect the distribution of immune cells within the liver.

The present studies demonstrate that NS3/4A-based genetic vaccines effectively prime humoral and cellular immune responses. Intra-hepatic expression of NS3/4A did not cause any spontaneous liver disease or overt pathology suggesting that it safely can be used in genetic vaccines. Thus, the NS3/4A gene can safely activate immune responses that are similar to those found in humans who can clear HCV. The NS3/4A should therefore be a potential vaccine candidate against chronic HCV infections.

Ulla Bredberg-Radén | alfa

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>