Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy tested to protect bone marrow during chemotherapy

07.06.2004


Researchers at the Center for Stem Cell and Regenerative Medicine and the Case Comprehensive Cancer Center at Case Western Reserve University and the Ireland Cancer Center at University Hospitals of Cleveland report progress toward the goal of employing gene therapy to help protect the bone marrow cells of cancer patients undergoing chemotherapy.



Stanton Gerson, M.D., professor of medicine, has been leading the effort to introduce a gene into bone marrow cells that would protect the cells against the debilitating effects of chemo, thereby helping the patients maintain greater strength following chemotherapy.

June 6, at the American Society of Gene Therapy meeting in Minneapolis, Gerson and colleagues will present preliminary results of a Phase I clinical trial to test the safety of the method in humans. The study found no complications in five patients who were tested thus far, and found up to 41 percent transfer of the protective gene to the bone marrow, or blood stem cells.


Gerson, who also directs the Center for Stem Cell and Regenerative Medicine, said, "The results are encouraging and will help move this novel approach into new therapies."

Gerson’s group, which includes Jane Reese and Omer Koc, M.D., has studied the gene mutant MGMT, that is able to protect stem cells from chemotherapy. In animal studies, they have found that this gene can provide stem cells with very high levels of survival advantage [more than 500 fold] compared to normal stem cells not carrying the gene.

Based on those preclinical animal results, they have begun this clinical trial in patients with advanced cancer. Blood stem cells are collected from patients and exposed to a retrovirus containing the gene, which inserts the gene into the cells. Patients are then infused with their own genetically-modified cells. Patients are then treated with combination chemotherapy. Because stem cells have the new gene, they are resistant to these chemotherapy agents.

This trial is unique because the patients do not undergo treatment to empty the bone marrow prior to cell infusion, which is the standard procedure. Instead, the intent is to "select" for the genetically altered cells with intermittent outpatient chemotherapy treatments, said Gerson.

So far, five patients have entered the trial at the Ireland Cancer Center at University Hospitals of Cleveland, all with advanced malignancies. Only one patient has been able to receive more than one dose of chemotherapy because the others had evidence of tumor growth and were switched to other therapies. In one patient, evidence of genetically altered cells was documented by molecular analysis in both the blood and marrow six weeks after the infusion.

Accrual for this study continues so that different levels of cell infusion and the impact of more doses of chemotherapy on the ability to select for the genetically altered stem cells can be assessed.

Future clinical trails with this stem cell gene may be used to improve treatments for patients with specific cancers and with inherited stem cell diseases.

George Stamatis | EurekAlert!
Further information:
http://www.cwru.edu/

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>