Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CP-675,206, a novel monoclonal antibody, enlists the immune system to fight advanced melanoma

07.06.2004


Early testing of an experimental human monoclonal antibody showed a striking benefit in patients with advanced melanoma, say researchers at The University of Texas M. D. Anderson Cancer Center, who presented their findings at the annual meeting of the American Society of Clinical Oncology.



Of 39 patients given a single injection of CP-675,206 (known as CP-675), tumors disappeared in three patients, shrunk in a fourth patient, and cancer stopped growing in five other patients. These responses have remained since their initial treatment, which ranged from 13 to 28 months ago.

Most of the patients in the trial had advanced melanoma, which has a median survival of less than a year, says the study’s principal investigator, Luis Camacho, M.D., MPH, assistant professor in the Department of Melanoma Medical Oncology.


"We were very pleasantly surprised to find such objective antitumor responses in a Phase I clinical trial, which is designed to find the ideal dose and to look for side effects," says Camacho. "These results are very early, but they are encouraging to us because there are no good agents available to treat melanoma once it has spread."

The researchers gradually increased the amount of the initially tested dose by 1,500 fold, evaluating seven different dose levels, before they found higher doses that both produced an effect and had tolerable side effects. Most of the patients who did not respond to the drug were those treated with the lower doses, the investigators say.

The study was conducted at M. D. Anderson Cancer Center and at the University of California, Los Angeles. A collaborating researcher is Jesus Gomez Navarro, M.D., clinical director of the monoclonal antibody program at Pfizer, Inc., which developed the antibody and is sponsoring the clinical trial.

The researchers say the antibody seems to act as a "nonspecific immune booster" which enlists the immune system to fight cancer. It acts by blocking a key negative regulator of the activity of the immune system. This regulator, cytotoxic T lymphocyte-associated antigen 4 (CTLA4), stops activated immune cells from attacking the body’s own tissues. The antibody, in turn, stops the function of CTLA4, a receptor that works as "the brakes" of the immune system.

Like a vaccine, CP-675 seems to continue to work long after patients receive the single two- to four-hour injection, Camacho says. "We believe the monoclonal antibody enlists the immune system to fight any new cancer cells trying to grow," he says.

The antibody may work particularly well in melanoma, he adds, because previous research has shown the immune system, if activated, can recognize this cancer.

Because the antibody allowed the immune system to attack cells that "looked" similar to the body’s own, researchers worried that it could produce autoimmune disorders such as rheumatoid arthritis. But the only side effects that were observed, including rashes and diarrhea, occurred at the highest doses and were resolved without long-term problems, Camacho says.

Based on the results, Pfizer has launched a Phase II study, which is enrolling 100 patients at seven institutions nationwide. Camacho will serve as the principal investigator for this trial as well.


Additional contact information:

Laura Sussman
ASCO
Cell: 832-264-8893

Julie Penne
Tel: 713-792-0655

Julie Penne | EurekAlert!

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>