Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC assessing spinal cord stimulator in treatment of chronic pain

04.06.2004


A neurosurgeon at the University of Illinois at Chicago is assessing how well an implanted electronic device that stimulates nerve fibers in the spinal cord relieves chronic pain.



The device, made by Advanced Neuromodulation Systems, is already approved by the Food and Drug Administration, but is undergoing further evaluation at several sites throughout the United States for potential marketing overseas.

"Coping with chronic pain is one of life’s greatest challenges," said Dr. Konstantin Slavin, assistant professor of neurosurgery at the UIC College of Medicine.


More than 50 million Americans suffer from chronic pain, Slavin said, and many of them become partially or totally disabled. "That’s why it is important to identify effective methods for treating intractable pain, and document the extent to which these treatments can improve patients’ quality of life."

Functioning like a cardiac pacemaker, which uses electrical impulses to regulate the heartbeat, the Genesis(TM) Implantable Pulse Generator transmits low-level electrical impulses to the spinal cord to modify pain signals. The electrical impulses alter messages before they reach the brain, replacing the pain signals with what patients describe as a tingling sensation.

The system, which is used to treat chronic pain in the trunk or limbs, consists of a pulse generator and leads. It is implanted during a surgical procedure that can be brief and minimally invasive, depending on the type of leads emplaced.

The leads are positioned in the space above the spinal cord, called the epidural space, with electrodes at the end of the leads in contact with the specific nerve fibers extending from the spinal cord that are the source of the patient’s pain.

The pulse generator is the power source, consisting of a battery and related electronics housed in a single metal container that is about the size of a silver dollar. It is placed just under the skin in a practical location determined by the physician and patient, usually on the abdomen or just below the beltline on the back.

Patients use an external device -- a remote control -- to turn the stimulator on and off. They can increase or decrease the pulse transmitted to the nerve fibers to match their current activity or pain level.

Spinal cord stimulation is not a cure, so it doesn’t usually eliminate all sensations of pain, but it can lessen the intensity of the pain, Slavin said, decreasing the need for medication and allowing patients to resume more normal activities.

The device can be used around the clock, if necessary, or only as needed during the day or night.

A total of 15 patients will be involved in the study at UIC, with up to 50 patients enrolled at five sites nationwide. Before the pulse generator is implanted and again one month, three months and six months after the surgery, participants will be asked to fill out a questionnaire that reviews medical history, pain symptoms and characteristics, pain location and quality of life.

Patients interested in obtaining more information about the study may call 800-597-5970 and ask for the research division.

Sharon Butler | UIC
Further information:
http://www.uic.edu/depts/mcam/

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>