Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC assessing spinal cord stimulator in treatment of chronic pain

04.06.2004


A neurosurgeon at the University of Illinois at Chicago is assessing how well an implanted electronic device that stimulates nerve fibers in the spinal cord relieves chronic pain.



The device, made by Advanced Neuromodulation Systems, is already approved by the Food and Drug Administration, but is undergoing further evaluation at several sites throughout the United States for potential marketing overseas.

"Coping with chronic pain is one of life’s greatest challenges," said Dr. Konstantin Slavin, assistant professor of neurosurgery at the UIC College of Medicine.


More than 50 million Americans suffer from chronic pain, Slavin said, and many of them become partially or totally disabled. "That’s why it is important to identify effective methods for treating intractable pain, and document the extent to which these treatments can improve patients’ quality of life."

Functioning like a cardiac pacemaker, which uses electrical impulses to regulate the heartbeat, the Genesis(TM) Implantable Pulse Generator transmits low-level electrical impulses to the spinal cord to modify pain signals. The electrical impulses alter messages before they reach the brain, replacing the pain signals with what patients describe as a tingling sensation.

The system, which is used to treat chronic pain in the trunk or limbs, consists of a pulse generator and leads. It is implanted during a surgical procedure that can be brief and minimally invasive, depending on the type of leads emplaced.

The leads are positioned in the space above the spinal cord, called the epidural space, with electrodes at the end of the leads in contact with the specific nerve fibers extending from the spinal cord that are the source of the patient’s pain.

The pulse generator is the power source, consisting of a battery and related electronics housed in a single metal container that is about the size of a silver dollar. It is placed just under the skin in a practical location determined by the physician and patient, usually on the abdomen or just below the beltline on the back.

Patients use an external device -- a remote control -- to turn the stimulator on and off. They can increase or decrease the pulse transmitted to the nerve fibers to match their current activity or pain level.

Spinal cord stimulation is not a cure, so it doesn’t usually eliminate all sensations of pain, but it can lessen the intensity of the pain, Slavin said, decreasing the need for medication and allowing patients to resume more normal activities.

The device can be used around the clock, if necessary, or only as needed during the day or night.

A total of 15 patients will be involved in the study at UIC, with up to 50 patients enrolled at five sites nationwide. Before the pulse generator is implanted and again one month, three months and six months after the surgery, participants will be asked to fill out a questionnaire that reviews medical history, pain symptoms and characteristics, pain location and quality of life.

Patients interested in obtaining more information about the study may call 800-597-5970 and ask for the research division.

Sharon Butler | UIC
Further information:
http://www.uic.edu/depts/mcam/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>