Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report major advance in gene therapy technique

04.06.2004


Despite a roller-coaster ride of ups and downs during the past 15 years, gene therapy has continued to attract many of the world’s brightest scientists. They are tantalized by the enormous potential that replacing missing genes or disabling defective ones offers for curing diseases of many kinds.



One group, consisting of researchers from the University of Wisconsin Medical School, the Waisman Center at UW-Madison and Mirus Bio Corporation of Madison, Wis., now reports a critical advance relating to one of the most fundamental and challenging problems of gene therapy: how to safely and effectively get therapeutic DNA inside cells.

The Wisconsin scientists have discovered a remarkably simple solution. They used a system that is virtually the same as administering an IV (intravenous injection) to inject genes and proteins into the limb veins of laboratory animals of varying sizes. The genetic material easily found its way to muscle cells, where it functioned as it should for an extended period of time.


"I think this is going to change everything relating to gene therapy for muscle problems and other disorders," says Jon Wolff, a gene therapy expert who is a UW Medical School pediatrics and medical genetics professor based at the Waisman Center. "Our non-viral, vein method is a clinically viable procedure that lets us safely, effectively and repeatedly deliver DNA to muscle cells. We hope that the next step will be a clinical trial in humans."

Wolff conducted the research with colleagues at Mirus, a biotechnology company he created to investigate the gene delivery problem. He will be describing the work on June 3 at the annual meeting of the American Society for Gene Therapy in Minneapolis, and a report will appear in a coming issue of Molecular Therapy. The research has exciting near-term implications for muscle and blood vessel disorders in particular.

Duchenne’s muscular dystrophy, for example, is a genetic disease characterized by a lack of muscle-maintaining protein called dystrophin. Inserting genes that produce dystrophin into muscle cells could override the defect, scientists theorize, ensuring that the muscles with the normal gene would not succumb to wasting. Similarly, the vein technique can be useful in treating peripheral arterial occlusive disease, often a complication of diabetes. The disorder results in damaged arteries and, frequently, the subsequent amputation of toes.

What’s more, Wolff says, with refinements the technique has the potential to be used for liver diseases such as hepatitis, cirrhosis and PKU (phenylketonuria).

In the experiments, the scientists did not use viruses to carry genes inside cells, a path many other groups have taken. Instead, they used "naked" DNA, an approach Wolff has pioneered. Naked DNA poses fewer immune issues because, unlike viruses, it does not contain a protein coat (hence the term "naked"), which means it cannot move freely from cell to cell and integrate into the chromosome. As a result, naked DNA does not cause antibody responses or genetic reactions that can render the procedure harmful.

Researchers rapidly injected "reporter genes" into a vein in laboratory animals. Under a microscope, these genes brightly indicate gene expression. A tourniquet high on the leg helped keep the injected solution from leaving the limb.

"Delivering genes through the vascular system lets us take advantage of the access blood vessels have - through the capillaries that sprout from them - to tissue cells," Wolff says, adding that muscle tissue is rich with capillaries. Rapid injection forced the solution out of the veins into capillaries and then muscle tissue.

The injections yielded substantial, stable levels of gene activity throughout the leg muscles in healthy animals, with minimal side effects. "We detected gene expression in all leg muscle groups, and the DNA stayed in muscle cells indefinitely," notes Wolff.

In addition, the scientists were able to perform multiple injections without damaging the veins. "The ability to do repeated injections has important implications for muscle diseases since to cure them, a high percentage of therapeutic cells must be introduced," he says.

The researchers also found that they could use the technique to successfully administer therapeutically important genes and proteins. When they injected dystrophin into mice that lacked it, the protein remained in muscle cells for at least six months. Similar lasting power occurred with the injection of erythropoietin, which stimulates red blood cell production.

Furthermore, in an ancillary study, the researchers learned that the technique could be used effectively to introduce molecules that inhibit - rather than promote - gene expression, a powerful new procedure called RNA interference.

"This could be very useful if you want to down-regulate a protein that’s causing a muscle disorder, such as with myotonic dystrophy," says Wolff.

In the late 1980s, Wolff and his UW-Madison colleagues surprised the scientific world with their discovery that they could get genes to express in muscle cells simply by injecting naked DNA into rodent muscle. The Wisconsin Alumni Research Foundation (WARF) licensed the technology to Vical, a California biotechnology company.

Once Wolff created Mirus, a local company, he and his colleagues turned their attention to the vascular system, a conduit to multiple leg and arm muscles they felt would work more efficiently than direct injection into muscle. WARF licensed the vascular technique to Mirus, which now holds the patent and continues to commercialize the technique.

In their first studies, the researchers focused on arteries, but then began to concentrate on veins. "Injecting any substance into arteries carries a degree of risk since, unlike veins, only one artery feeds a whole limb," notes Wolff.

In a related procedure, they experienced excellent results with high-pressure injection of genes into the tail veins of rodents, a technique that yielded extensive gene expression in the animals’ livers.

"We think the genes traveled from the capillaries through the relatively large holes that exist in liver cells," Wolff says, adding that the technique has become a successful research tool for many laboratories around the world.

"For delivering genes to limb muscles, the vein approach is so simple," he says. "We never expected it to work so well."


Collaborating on the study were James Hagstrom, Julia Hegge, Mark Nobel, David Lewis and Hans Herweijer, from Mirus Bio; and Guofeng Zhang and Vladimir Budker, from the Waisman Center.

Dian Land | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>