Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover way to regulate the body’s energy expenditure

02.06.2004


Scientists have discovered a protein that controls the amount of fat stored in the body, offering new clues for obesity treatments.



The research, published in this week’s Proceedings of the National Academy of Sciences, shows how the protein regulates the activity of a key gene responsible for maintaining the body’s temperature, called uncoupling protein 1 (UCP1).

The new protein, called RIP140, blocks the expression of UCP1, and causes the body to use up more energy and store less fat.


The team of scientists from Imperial College London, Kings College London, University of Cambridge, and Hammersmith Hospital, UK, conducted studies in transgenic mice born without RIP140, and in normal mice with RIP140. They found that mice without RIP140 were lean and showed resistance to high fat diet induced obesity.

On average, mice without RIP140 were 20 per cent lighter compared with normal mice and accumulated between 50 and 70 per cent less fat when compared with mice with RIP140, even though their food intake was similar.

Professor Malcolm Parker from Imperial College London, and based at Hammersmith Hospital, and one of the study’s authors comments: “This discovery could provide a novel approach to developing new obesity treatments. By reducing the levels of RIP140, it is possible to increase the activity of the UCP1 gene. UCP1 plays a key role in regulating energy balance in the body, and through this we can reduce body weight by increasing energy expenditure.

“Although these are very promising observations we do need to be careful in interpreting the results. The study was carried out in mice, which were born without RIP140, and it will be important to determine the consequences of blocking RIP140 action in adult animals.”

This work was supported by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council. Professor Parker and his team have recently signed a deal with CytRx, a US based biopharmaceutical company, to commercialise the results of this research.

Tony Stephenson | alfa
Further information:
http://www.ic.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>