Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNAi delivery system crosses blood-brain barrier to target brain cancer

01.06.2004


Researchers have combined novel molecular targeting technologies to deliver gene-silencing therapy specifically to tumor cells shielded by a normally impermeable obstacle, the blood brain barrier.



In the June 1 issue of the journal Clinical Cancer Research, William Pardridge, M.D., UCLA, reported that a delivery packet equipped with two specific antibodies first recognizes the transferrin receptor, a key protein portal in the blood brain barrier, and then gains entry into brain cancer cells with the second antibody targeting the human insulin receptor.

Using the antibody keys to traverse both the blood brain barrier and the tumor cell membrane, the delivery packets--called liposomes--deposit a genetically engineered non-viral plasmid in the brain cancer cells. The plasmid encodes a short hairpin RNA (shRNA) designed to interfere with the expression of the epidermal growth factor receptor, EGFR, a potent proponent of tumor cell proliferation. The use of shRNA to silence gene expression is RNA interference (RNAi) technology.


When treated with a weekly intravenous dose of Dr. Pardridge’s targeted therapeutic, mice with brain tumors survive almost twice as long compared to mice that do not receive the treatment.

"This is the first drug delivery system that demonstrates that by using RNA interference technology, you can prolong life threatened by cancer," said Dr. Pardridge, Professor of Medicine at UCLA. "By solving the delivery problem, powerful molecular tools and therapies such as RNA interference can be moved to clinical trials where they can be tested to see how much benefit the patient gets."

The delivery system designed by the Pardridge research team is much like a minute parcel with a primary delivery address, a forwarding delivery address, and a message that halts proliferation of the tumor cells.

Liposomes are the parcel. Composed of lipid, or fat, molecules that align to form an enclosed membrane much like a sealed envelope, the liposomes are constructed with thousands of molecular probes that recognize two specific proteins. The proteins are the addresses to which the liposome is targeted. One antibody that is engineered into the liposome recognizes only the transferrin receptor, a protein common to the blood brain barrier. By binding tightly to the transferrin receptor, the liposome gains entry to the chamber in which the brain is normally screened from pathogens, foreign proteins, and even small molecules.

Once inside the compartment that houses and protects the brain, a second set of liposome-embedded antibodies seeks out the human insulin receptor found in the membranes of brain cancer cells. The insulin receptor antibody latches on to the tumor’s insulin receptors. The liposome, and its contents, uses the insulin receptor to gain entry to the tumor cell.

Within the tumor cell, the plasmid payload is released from the liposome.

"This is the ’Trojan Horse’ element of the therapy," Dr. Pardridge said. The liposome acts as the hollowed horse; the plasmid is the Trojan warrior released inside the cell to combat the cancer.

The plasmid is constructed of genetic material designed to reproduce shRNA, which is then metabolized by a protein in the tumor cell called Dicer. Dicer produces the active RNAi molecule that complements a defined sequence from the EGFR gene RNA. When the tumor cell divides, the RNAi molecule is produced and binds to the message from the tumor cells’ pool of EGFR RNA. Binding of the RNAi therapeutic molecule to the cells’ innate RNA results in the silencing of the EGFR message. No EGFR protein is produced, and the gene is effectively inactivated.

Without its normal workload of EGFR proteins to encourage cell proliferation, the tumor growth is held in check.

The Pardridge group confirmed that the treatment strategy thwarted EGFR function in two ways. The EGFR is set into action when it binds a growth factor related to epidermal growth factor, a hormone growth factor that travels outside of cells in the blood. Activated EGFR normally induces a flow of calcium across tumor cell membranes. That calcium mobilization was minimized in the brain cancer cells treated with the targeted liposome packet.

Furthermore, activated EGFR induces DNA replication and cell proliferation. A radiolabeled DNA component, tritiated thymidine, is incorporated into newly synthesized DNA. By monitoring the level of radiation in the brain cancer cells, Dr. Pardridge noted minimized DNA replication, and hence, cellular proliferation, in the cancer cells that were treated with the immunoliposomes. Tumors in the treated mice had reduced EGFR content, and the mice showed an 88 percent increase in survival time.

The research leading to the Pardridge group’s design of a tandem-probed immunoliposome laden with RNAi technology was supported with funding from the Accelerated Brain Cancer Cure (ABC2), and the U.S. Government. ABC2 is a nonprofit foundation dedicated to discovery of research leading to cures for brain cancer. ABC2 was created by the late Dan Case, chairman of H.P. Morgan H&Q, and his brother Steve Case, the founder of AOL and the former chairman of AOL Time Warner.


Founded in 1907, the American Association for Cancer Research is a professional society of more than 22,000 laboratory, translational, and clinical scientists engaged in all areas of cancer research in the United States and in more than 60 other countries. AACR’s mission is to accelerate the prevention and cure of cancer through research, education, communication, and advocacy. Its principal activities include the publication of five major peer-reviewed scientific journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. AACR’s Annual Meetings attract more than 15,000 participants who share new and significant discoveries in the cancer field. Specialty meetings, held throughout the year, focus on the latest developments in all areas of cancer research.

Russell Vanderboom | EurekAlert!
Further information:
http://www.aacr.org/

More articles from Health and Medicine:

nachricht Cardiac diseases: when less is more
30.03.2017 | Universitätsspital Bern

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>