Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNAi delivery system crosses blood-brain barrier to target brain cancer

01.06.2004


Researchers have combined novel molecular targeting technologies to deliver gene-silencing therapy specifically to tumor cells shielded by a normally impermeable obstacle, the blood brain barrier.



In the June 1 issue of the journal Clinical Cancer Research, William Pardridge, M.D., UCLA, reported that a delivery packet equipped with two specific antibodies first recognizes the transferrin receptor, a key protein portal in the blood brain barrier, and then gains entry into brain cancer cells with the second antibody targeting the human insulin receptor.

Using the antibody keys to traverse both the blood brain barrier and the tumor cell membrane, the delivery packets--called liposomes--deposit a genetically engineered non-viral plasmid in the brain cancer cells. The plasmid encodes a short hairpin RNA (shRNA) designed to interfere with the expression of the epidermal growth factor receptor, EGFR, a potent proponent of tumor cell proliferation. The use of shRNA to silence gene expression is RNA interference (RNAi) technology.


When treated with a weekly intravenous dose of Dr. Pardridge’s targeted therapeutic, mice with brain tumors survive almost twice as long compared to mice that do not receive the treatment.

"This is the first drug delivery system that demonstrates that by using RNA interference technology, you can prolong life threatened by cancer," said Dr. Pardridge, Professor of Medicine at UCLA. "By solving the delivery problem, powerful molecular tools and therapies such as RNA interference can be moved to clinical trials where they can be tested to see how much benefit the patient gets."

The delivery system designed by the Pardridge research team is much like a minute parcel with a primary delivery address, a forwarding delivery address, and a message that halts proliferation of the tumor cells.

Liposomes are the parcel. Composed of lipid, or fat, molecules that align to form an enclosed membrane much like a sealed envelope, the liposomes are constructed with thousands of molecular probes that recognize two specific proteins. The proteins are the addresses to which the liposome is targeted. One antibody that is engineered into the liposome recognizes only the transferrin receptor, a protein common to the blood brain barrier. By binding tightly to the transferrin receptor, the liposome gains entry to the chamber in which the brain is normally screened from pathogens, foreign proteins, and even small molecules.

Once inside the compartment that houses and protects the brain, a second set of liposome-embedded antibodies seeks out the human insulin receptor found in the membranes of brain cancer cells. The insulin receptor antibody latches on to the tumor’s insulin receptors. The liposome, and its contents, uses the insulin receptor to gain entry to the tumor cell.

Within the tumor cell, the plasmid payload is released from the liposome.

"This is the ’Trojan Horse’ element of the therapy," Dr. Pardridge said. The liposome acts as the hollowed horse; the plasmid is the Trojan warrior released inside the cell to combat the cancer.

The plasmid is constructed of genetic material designed to reproduce shRNA, which is then metabolized by a protein in the tumor cell called Dicer. Dicer produces the active RNAi molecule that complements a defined sequence from the EGFR gene RNA. When the tumor cell divides, the RNAi molecule is produced and binds to the message from the tumor cells’ pool of EGFR RNA. Binding of the RNAi therapeutic molecule to the cells’ innate RNA results in the silencing of the EGFR message. No EGFR protein is produced, and the gene is effectively inactivated.

Without its normal workload of EGFR proteins to encourage cell proliferation, the tumor growth is held in check.

The Pardridge group confirmed that the treatment strategy thwarted EGFR function in two ways. The EGFR is set into action when it binds a growth factor related to epidermal growth factor, a hormone growth factor that travels outside of cells in the blood. Activated EGFR normally induces a flow of calcium across tumor cell membranes. That calcium mobilization was minimized in the brain cancer cells treated with the targeted liposome packet.

Furthermore, activated EGFR induces DNA replication and cell proliferation. A radiolabeled DNA component, tritiated thymidine, is incorporated into newly synthesized DNA. By monitoring the level of radiation in the brain cancer cells, Dr. Pardridge noted minimized DNA replication, and hence, cellular proliferation, in the cancer cells that were treated with the immunoliposomes. Tumors in the treated mice had reduced EGFR content, and the mice showed an 88 percent increase in survival time.

The research leading to the Pardridge group’s design of a tandem-probed immunoliposome laden with RNAi technology was supported with funding from the Accelerated Brain Cancer Cure (ABC2), and the U.S. Government. ABC2 is a nonprofit foundation dedicated to discovery of research leading to cures for brain cancer. ABC2 was created by the late Dan Case, chairman of H.P. Morgan H&Q, and his brother Steve Case, the founder of AOL and the former chairman of AOL Time Warner.


Founded in 1907, the American Association for Cancer Research is a professional society of more than 22,000 laboratory, translational, and clinical scientists engaged in all areas of cancer research in the United States and in more than 60 other countries. AACR’s mission is to accelerate the prevention and cure of cancer through research, education, communication, and advocacy. Its principal activities include the publication of five major peer-reviewed scientific journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. AACR’s Annual Meetings attract more than 15,000 participants who share new and significant discoveries in the cancer field. Specialty meetings, held throughout the year, focus on the latest developments in all areas of cancer research.

Russell Vanderboom | EurekAlert!
Further information:
http://www.aacr.org/

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>