Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNAi delivery system crosses blood-brain barrier to target brain cancer

01.06.2004


Researchers have combined novel molecular targeting technologies to deliver gene-silencing therapy specifically to tumor cells shielded by a normally impermeable obstacle, the blood brain barrier.



In the June 1 issue of the journal Clinical Cancer Research, William Pardridge, M.D., UCLA, reported that a delivery packet equipped with two specific antibodies first recognizes the transferrin receptor, a key protein portal in the blood brain barrier, and then gains entry into brain cancer cells with the second antibody targeting the human insulin receptor.

Using the antibody keys to traverse both the blood brain barrier and the tumor cell membrane, the delivery packets--called liposomes--deposit a genetically engineered non-viral plasmid in the brain cancer cells. The plasmid encodes a short hairpin RNA (shRNA) designed to interfere with the expression of the epidermal growth factor receptor, EGFR, a potent proponent of tumor cell proliferation. The use of shRNA to silence gene expression is RNA interference (RNAi) technology.


When treated with a weekly intravenous dose of Dr. Pardridge’s targeted therapeutic, mice with brain tumors survive almost twice as long compared to mice that do not receive the treatment.

"This is the first drug delivery system that demonstrates that by using RNA interference technology, you can prolong life threatened by cancer," said Dr. Pardridge, Professor of Medicine at UCLA. "By solving the delivery problem, powerful molecular tools and therapies such as RNA interference can be moved to clinical trials where they can be tested to see how much benefit the patient gets."

The delivery system designed by the Pardridge research team is much like a minute parcel with a primary delivery address, a forwarding delivery address, and a message that halts proliferation of the tumor cells.

Liposomes are the parcel. Composed of lipid, or fat, molecules that align to form an enclosed membrane much like a sealed envelope, the liposomes are constructed with thousands of molecular probes that recognize two specific proteins. The proteins are the addresses to which the liposome is targeted. One antibody that is engineered into the liposome recognizes only the transferrin receptor, a protein common to the blood brain barrier. By binding tightly to the transferrin receptor, the liposome gains entry to the chamber in which the brain is normally screened from pathogens, foreign proteins, and even small molecules.

Once inside the compartment that houses and protects the brain, a second set of liposome-embedded antibodies seeks out the human insulin receptor found in the membranes of brain cancer cells. The insulin receptor antibody latches on to the tumor’s insulin receptors. The liposome, and its contents, uses the insulin receptor to gain entry to the tumor cell.

Within the tumor cell, the plasmid payload is released from the liposome.

"This is the ’Trojan Horse’ element of the therapy," Dr. Pardridge said. The liposome acts as the hollowed horse; the plasmid is the Trojan warrior released inside the cell to combat the cancer.

The plasmid is constructed of genetic material designed to reproduce shRNA, which is then metabolized by a protein in the tumor cell called Dicer. Dicer produces the active RNAi molecule that complements a defined sequence from the EGFR gene RNA. When the tumor cell divides, the RNAi molecule is produced and binds to the message from the tumor cells’ pool of EGFR RNA. Binding of the RNAi therapeutic molecule to the cells’ innate RNA results in the silencing of the EGFR message. No EGFR protein is produced, and the gene is effectively inactivated.

Without its normal workload of EGFR proteins to encourage cell proliferation, the tumor growth is held in check.

The Pardridge group confirmed that the treatment strategy thwarted EGFR function in two ways. The EGFR is set into action when it binds a growth factor related to epidermal growth factor, a hormone growth factor that travels outside of cells in the blood. Activated EGFR normally induces a flow of calcium across tumor cell membranes. That calcium mobilization was minimized in the brain cancer cells treated with the targeted liposome packet.

Furthermore, activated EGFR induces DNA replication and cell proliferation. A radiolabeled DNA component, tritiated thymidine, is incorporated into newly synthesized DNA. By monitoring the level of radiation in the brain cancer cells, Dr. Pardridge noted minimized DNA replication, and hence, cellular proliferation, in the cancer cells that were treated with the immunoliposomes. Tumors in the treated mice had reduced EGFR content, and the mice showed an 88 percent increase in survival time.

The research leading to the Pardridge group’s design of a tandem-probed immunoliposome laden with RNAi technology was supported with funding from the Accelerated Brain Cancer Cure (ABC2), and the U.S. Government. ABC2 is a nonprofit foundation dedicated to discovery of research leading to cures for brain cancer. ABC2 was created by the late Dan Case, chairman of H.P. Morgan H&Q, and his brother Steve Case, the founder of AOL and the former chairman of AOL Time Warner.


Founded in 1907, the American Association for Cancer Research is a professional society of more than 22,000 laboratory, translational, and clinical scientists engaged in all areas of cancer research in the United States and in more than 60 other countries. AACR’s mission is to accelerate the prevention and cure of cancer through research, education, communication, and advocacy. Its principal activities include the publication of five major peer-reviewed scientific journals: Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention. AACR’s Annual Meetings attract more than 15,000 participants who share new and significant discoveries in the cancer field. Specialty meetings, held throughout the year, focus on the latest developments in all areas of cancer research.

Russell Vanderboom | EurekAlert!
Further information:
http://www.aacr.org/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>