Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The silence of the genes

01.06.2004


USC researchers provide unique view of inherited disorders, cancer with discussion of new field of epigenetics in journal Nature



Researchers from the USC/Norris Comprehensive Cancer Center are heralding an entirely new approach to the treatment of aging, inherited diseases and cancer in a review paper published in today’s issue of the journal Nature. Dispelling the belief that the only way to treat such conditions is by fixing or replacing damaged genes, they are instead focusing on the field of epigenetics--the study of changes in gene silencing that occur without changes in the genes themselves.

Many genes in our bodies are permanently turned off as part of normal development. But sometimes that process goes awry, turning off genes that should otherwise remain active. The new field of epigenetic therapy, put forth by the USC researchers in their Nature review paper, aims to switch these genes back on.


In their article, Peter Jones, Ph.D., director of USC/Norris and Distinguished Professor of Biochemistry and Molecular Biology and Urology at the Keck School of Medicine of the University of Southern California, and his colleagues lay out their new perspective on the treatment of genetic disorders by discussing the potential ways to interfere with epigenetic gene silencing, and the ways in which that potential is already being exploited.

"The fact that many human diseases, including cancer, have an epigenetic etiology has encouraged the development of a new therapeutic option that might be termed ’epigenetic therapy,’" Jones and his colleagues write. They add that a number of chemical compounds have been found that have an affect on some form of epigenetic gene change, and note that "several of these agents are currently being tested in clinical trials," including trials being conducted at USC/Norris.

This Nature review comes just days after the U.S. Food and Drug Administration (FDA) approved the epigenetic inhibitor azacitidine (Vidaza(tm), Pharmion Corporation) for the treatment of a pre-leukemic bone-marrow disorder known as myelodysplastic syndrome, or MDS. MDS, which is characterized by the production of abnormal, immature blood cells, affects between 10,000 and 30,000 people each year, is most prevalent in people over age 60, and can be fatal. Until now, there was no approved treatment for MDS.

Azacitidine was first synthesized in the 1960s in Czechoslovakia; it received its first exposure in the United States in the Childrens Hospital Los Angeles laboratory of then-fellow Peter Jones. Although the drug had initially been envisioned as a chemotherapy agent, Jones showed that it had great utility in the laboratory because it could turn on genes that had been previously locked down by methylation--a type of epigenetic change in which a methyl group becomes physically attached to the region of a gene that regulates its production of protein, shutting it down.

But Jones, who is one of the world’s pre-eminent epigenetics experts, says that azacitidine’s approval is bigger than its role in MDS.

"This is the first approved drug in a new kind of therapy-epigenetic therapy," Jones notes. "That gives it tremendous potential importance not just in this disease, but in a host of others as well."

Indeed, cancer and its relatives are far from the only conditions that may be affected by epigenetic gene silencing, Jones notes. A number of other diseases--most notably several that can lead to intellectual disabilities--appear to have epigenetic roots. Among them are Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome and Rett syndrome. Jones also sees the application of epigenetics to combat disorders caused by aging, providing the opportunity to turn on the genes shut down by the aging process.

And the search for the right drugs to undo the epigenetic damage is equally wide-ranging. Jones is involved in research into the utility of a compound called azadeoxycytidine--a more specific version of azacitidine that only affects DNA and thus potentially carries fewer side effects. Many of the major pharmaceutical companies have at least one methylation inhibitor trial ongoing, Jones adds, and there are dozens of additional compounds being screened for their potential utility.

"It is apparent that we are just at the beginning of understanding the substantial contributions of epigenetics to human disease, and there are probably many surprises ahead," Jones and colleagues note in their review. "Elucidating the whole bandwidth of epigenetic mechanisms is an exciting challenge and will eventually lead to a clearer understanding of the development of human disease and direct therapeutic concepts into new directions."


Gerda Egger, Gangning Liang, Ana Aparicio, Peter Jones, "Epigenetics in human disease and prospects for epigenetic therapy." Nature, 429:457-463, 27 May 2004.

Sarah Huoh | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>