Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells From Fat Tissue Turned Into Functional Nerve Cells

01.06.2004


Two years after transforming human fat cells into what appeared to be nerve cells, a group led by Duke University Medical Center researchers has gone one step further by demonstrating that these new cells also appear to act like nerve cells.


Henry Rice, M.D., and Kristine Safford
CREDIT: Duke University Medical Center



The team said that the results of its latest experiments provide the most compelling scientific evidence to date that researchers will in the future be able to take cells from a practically limitless source -- fat -- and retrain them to differentiate along new developmental paths. These cells, they said, could then be used to possibly treat a number of human ailments of the central and peripheral nervous systems.

The results of the team’s latest experiments were published June 1, 2004, in the journal Experimental Neurology.


Using a cocktail of growth factors and induction agents, the researchers transformed cells isolated from mouse fat, also known as adipose tissue, into two important nerve cell types: neurons and glial cells. Neurons carry electrical signals from cell to cell, while glial cells surround neurons like a sheath.

"We have demonstrated that within fat tissue there is a population of stromal cells that can differentiate into different types of cells with many of the characteristics of neuronal and glial cells," said Duke’s Kristine Safford, first author of the paper. "These findings support more research into developing adipose tissue as a viable source for cellular-based therapies."

Over the past several years, Duke scientists have demonstrated the ability to reprogram these adipose-derived adult stromal cells into fat, cartilage and bone cells. All of these cells arise from mesenchymal, or connective tissue, parentage. However, the latest experiments have demonstrated that researchers can transform these cells from fat into a totally different lineage.

Earlier this year, Duke researchers demonstrated that these adipose-derived cells are truly adult stem cells. As a source of cells for treatment, adipose tissue is not only limitless, it does not carry the potentially charged ethical or political concerns as other stem cell sources, the researchers said.

"This is a big step to take undifferentiated cells that haven’t committed to a particular future and redirect them to develop down a different path," said Duke surgeon Henry Rice, M.D., senior member of the research team. "Results such as these challenge the traditional dogma that once cells become a certain type of tissue they are locked into that destiny. While it appears that we have awakened a new pathway of development, the exact trigger for this change is still not known."

For their latest experiments, the researchers demonstrated that the newly transformed adipose cells expressed many similar cellular proteins as normal nerve and glial cells. Furthermore, they showed that the function of these cells is similar to nerves.

They exposed these newly formed cells to N-methyl-D-aspartate (NMDA), an agent which blocks the activity of the neurotransmitter glutamate and is toxic to nerve cells. In response to NMDA, the newly induced cells died, a response similar to normal nerve cells under the same conditions. Physiologic insults -- such as stroke -- can stimulate NMDA receptors on nerve cells, which can cause nerve cell damage or death by over-stimulating them.

"We found that these induced adipose cells demonstrated an excitotoxic response to NMDA that corresponded with a loss of cell viability, which suggests that these induced cells had formed functional NMDA receptors similar to those found on nerve cells," Rice explained. "Recent studies have demonstrated that NMDA receptor activation by glutamate may induce early gene transcription in developing neurons as well as determine the rate of neuronal proliferation in the brain. Our findings suggest that these induced cells exhibit characteristics similar to developing neuronal tissue."

Now that the researchers are confident that these newly induced cells appear to have similar functions as nerve cells, the next step will be to see how they respond when they are implanted a living animal model.

"While this is an important step forward, we still face many challenges to making use of these cells to treat human problems," said longtime collaborator Jeffrey Gimble, M.D., Pennington Biomedical Research Center at Louisiana State University System. "It seems probable that the potential first uses of such therapy would be in an acute setting, where you would have a window of opportunity right after a stroke, or spinal cord or peripheral nerve injury."

Until recently, it was believed that organisms were born with the full complement of neuronal cells, and that new neurons could not be formed. According to the researchers, the findings of their studies, as well as the experiments performed by others on bone marrow stem cells, opens up new possibilities for the treatment of nervous system disorders or injuries.

"We are trying to think about human disease in a new way," Gimble said. "Everyone is used to the concept of surgical, medical or pharmacological approaches to the treatment of disease -- we’re looking at one of the next steps in biotechnology, which is using cellular therapies."

The current research was supported by the Owen H. Wangenstein, M.D., Faculty Research Fellowship of the American College of Surgeons. Other members of the Duke team included Shawn Safford, M.D., and Ashok Shetty, Ph.D.

Richard Merritt | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7625

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>