Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study could aid vaccine designers

28.05.2004


Investigators from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have conducted studies in mice to gain a new picture of how the immune system’s "killer" T cells are prompted to destroy infected cells. Their insights provide a blueprint for rational design of vaccines that induce desired T-cell responses.



The findings are published in this week’s Science. "If we are correct, what we’ve found will put rational vaccine design on a firmer footing," says Jonathan Yewdell, M.D., Ph.D., who led the NIAID team.

T cells belong to the cellular arm of the immune system’s two-pronged defense mechanism against foreign invaders--the other arm features blood-borne antibodies. Historically, vaccines aimed to stimulate antibody production in a bid to prevent specific diseases. More recently, scientists have begun to manipulate T cells to create vaccines effective against pathogens that antibodies alone cannot control. Such T-cell-inducing vaccines are being tested against infectious diseases such as HIV/AIDS and hepatitis and are being studied as treatments for certain cancers.


Once alerted to the presence of infected cells, resting T cells are "awakened" and begin to multiply rapidly. Then they zero in on and destroy infected cells while sparing uninfected ones. Rousing slumbering T cells is the job of dendritic cells, the sentinels of the immune system. Dendritic cells activate the T cells by displaying peptides--small pieces of virus or other foreign protein--on their surfaces. In a process called direct priming, dendritic cells generate these peptides by themselves after being infected by a virus. Alternatively, dendritic cells may first interact with other body cells that have been infected by a virus and then activate the T cells. This indirect route is called cross-priming.

Vaccines may exploit either route to T-cell priming, but scientists have not known enough about the mechanisms behind cross-priming to exploit this route in vaccine design.

Test tube experiments suggested that molecular "chaperones" accompany peptides from infected cells to dendritic cells, and a number of experimental vaccines have been designed on this premise. But few studies have been done to determine if chaperoned peptides play any role in animal systems, notes Dr. Yewdell.

If the chaperoned peptide theory is correct, infected cells that make the most peptides should most strongly stimulate cross-priming. Conversely, fewer peptides should mean less cross-priming. To test this prediction, Dr. Yewdell and his colleagues created virus-infected cells that were genetically or chemically prevented from producing peptides and injected those cells into mice. They found the opposite of what they expected: cross-priming correlated directly with levels of whole proteins, rather than levels of peptides, expressed by the virus-infected cells.

This new information could aid vaccine design, says Dr. Yewdell. "Our experiments indicate that two distinct pathways exist to prime T cells," he says. If the rules for T-cell priming suggested by these experiments are correct, vaccines meant to interact with dendritic cells should be designed to generate large amounts of peptides, while vaccines that target other kinds of cells should be designed to generate whole proteins that will go on to be processed in the dendritic cells during T-cell cross-priming.

Prompting a strong and specific T-cell reaction may be the key to vaccines that are effective against certain infectious diseases, including HIV/AIDS and malaria, notes Dr. Yewdell. It is also possible that a therapeutic vaccine might be developed to boost the T cell activity of people who have chronic liver infections caused by hepatitis B or C viruses.


NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Reference: CC Norbury et al. CD8+ cell cross-priming via transfer of proteasome substrates. Science 304:1318-21 (2004).

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>