Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study could aid vaccine designers

28.05.2004


Investigators from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have conducted studies in mice to gain a new picture of how the immune system’s "killer" T cells are prompted to destroy infected cells. Their insights provide a blueprint for rational design of vaccines that induce desired T-cell responses.



The findings are published in this week’s Science. "If we are correct, what we’ve found will put rational vaccine design on a firmer footing," says Jonathan Yewdell, M.D., Ph.D., who led the NIAID team.

T cells belong to the cellular arm of the immune system’s two-pronged defense mechanism against foreign invaders--the other arm features blood-borne antibodies. Historically, vaccines aimed to stimulate antibody production in a bid to prevent specific diseases. More recently, scientists have begun to manipulate T cells to create vaccines effective against pathogens that antibodies alone cannot control. Such T-cell-inducing vaccines are being tested against infectious diseases such as HIV/AIDS and hepatitis and are being studied as treatments for certain cancers.


Once alerted to the presence of infected cells, resting T cells are "awakened" and begin to multiply rapidly. Then they zero in on and destroy infected cells while sparing uninfected ones. Rousing slumbering T cells is the job of dendritic cells, the sentinels of the immune system. Dendritic cells activate the T cells by displaying peptides--small pieces of virus or other foreign protein--on their surfaces. In a process called direct priming, dendritic cells generate these peptides by themselves after being infected by a virus. Alternatively, dendritic cells may first interact with other body cells that have been infected by a virus and then activate the T cells. This indirect route is called cross-priming.

Vaccines may exploit either route to T-cell priming, but scientists have not known enough about the mechanisms behind cross-priming to exploit this route in vaccine design.

Test tube experiments suggested that molecular "chaperones" accompany peptides from infected cells to dendritic cells, and a number of experimental vaccines have been designed on this premise. But few studies have been done to determine if chaperoned peptides play any role in animal systems, notes Dr. Yewdell.

If the chaperoned peptide theory is correct, infected cells that make the most peptides should most strongly stimulate cross-priming. Conversely, fewer peptides should mean less cross-priming. To test this prediction, Dr. Yewdell and his colleagues created virus-infected cells that were genetically or chemically prevented from producing peptides and injected those cells into mice. They found the opposite of what they expected: cross-priming correlated directly with levels of whole proteins, rather than levels of peptides, expressed by the virus-infected cells.

This new information could aid vaccine design, says Dr. Yewdell. "Our experiments indicate that two distinct pathways exist to prime T cells," he says. If the rules for T-cell priming suggested by these experiments are correct, vaccines meant to interact with dendritic cells should be designed to generate large amounts of peptides, while vaccines that target other kinds of cells should be designed to generate whole proteins that will go on to be processed in the dendritic cells during T-cell cross-priming.

Prompting a strong and specific T-cell reaction may be the key to vaccines that are effective against certain infectious diseases, including HIV/AIDS and malaria, notes Dr. Yewdell. It is also possible that a therapeutic vaccine might be developed to boost the T cell activity of people who have chronic liver infections caused by hepatitis B or C viruses.


NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Reference: CC Norbury et al. CD8+ cell cross-priming via transfer of proteasome substrates. Science 304:1318-21 (2004).

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>