Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study could aid vaccine designers

28.05.2004


Investigators from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have conducted studies in mice to gain a new picture of how the immune system’s "killer" T cells are prompted to destroy infected cells. Their insights provide a blueprint for rational design of vaccines that induce desired T-cell responses.



The findings are published in this week’s Science. "If we are correct, what we’ve found will put rational vaccine design on a firmer footing," says Jonathan Yewdell, M.D., Ph.D., who led the NIAID team.

T cells belong to the cellular arm of the immune system’s two-pronged defense mechanism against foreign invaders--the other arm features blood-borne antibodies. Historically, vaccines aimed to stimulate antibody production in a bid to prevent specific diseases. More recently, scientists have begun to manipulate T cells to create vaccines effective against pathogens that antibodies alone cannot control. Such T-cell-inducing vaccines are being tested against infectious diseases such as HIV/AIDS and hepatitis and are being studied as treatments for certain cancers.


Once alerted to the presence of infected cells, resting T cells are "awakened" and begin to multiply rapidly. Then they zero in on and destroy infected cells while sparing uninfected ones. Rousing slumbering T cells is the job of dendritic cells, the sentinels of the immune system. Dendritic cells activate the T cells by displaying peptides--small pieces of virus or other foreign protein--on their surfaces. In a process called direct priming, dendritic cells generate these peptides by themselves after being infected by a virus. Alternatively, dendritic cells may first interact with other body cells that have been infected by a virus and then activate the T cells. This indirect route is called cross-priming.

Vaccines may exploit either route to T-cell priming, but scientists have not known enough about the mechanisms behind cross-priming to exploit this route in vaccine design.

Test tube experiments suggested that molecular "chaperones" accompany peptides from infected cells to dendritic cells, and a number of experimental vaccines have been designed on this premise. But few studies have been done to determine if chaperoned peptides play any role in animal systems, notes Dr. Yewdell.

If the chaperoned peptide theory is correct, infected cells that make the most peptides should most strongly stimulate cross-priming. Conversely, fewer peptides should mean less cross-priming. To test this prediction, Dr. Yewdell and his colleagues created virus-infected cells that were genetically or chemically prevented from producing peptides and injected those cells into mice. They found the opposite of what they expected: cross-priming correlated directly with levels of whole proteins, rather than levels of peptides, expressed by the virus-infected cells.

This new information could aid vaccine design, says Dr. Yewdell. "Our experiments indicate that two distinct pathways exist to prime T cells," he says. If the rules for T-cell priming suggested by these experiments are correct, vaccines meant to interact with dendritic cells should be designed to generate large amounts of peptides, while vaccines that target other kinds of cells should be designed to generate whole proteins that will go on to be processed in the dendritic cells during T-cell cross-priming.

Prompting a strong and specific T-cell reaction may be the key to vaccines that are effective against certain infectious diseases, including HIV/AIDS and malaria, notes Dr. Yewdell. It is also possible that a therapeutic vaccine might be developed to boost the T cell activity of people who have chronic liver infections caused by hepatitis B or C viruses.


NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Reference: CC Norbury et al. CD8+ cell cross-priming via transfer of proteasome substrates. Science 304:1318-21 (2004).

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>