Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists use 21st-century technology to probe secrets of M. tuberculosis

27.05.2004


Computer model shows why some get sick after TB infection, while others don’t



University of Michigan microbiologists have created a virtual model of the human immune system that runs "in silico" to study what happens inside the lungs after people inhale Mycobacterium tuberculosis, the bacterium that causes TB.

The computer model is helping scientists learn more about this ancient pathogen, and why some people are able to fight off the infection, while others get sick. U-M scientists believe the answer could be hidden inside structures called granulomas, which immune cells build to surround and contain invading M. tuberculosis bacteria.


"Granulomas are the hallmark of tuberculosis," says Denise Kirschner Ph.D., an associate professor of microbiology and immunology in the U-M Medical School. "It’s the immune system’s fail-safe response to infection. If the immune system can’t clear the pathogen, it gets out the masonry and walls it off."

Kirschner presented research results and an analysis of time-lapse computer animations showing granuloma formation at a May 26 seminar during the American Society for Microbiology’s annual meeting held here this week.

"M. tuberculosis has been living with people for at least 4,000 years," says Kirschner. "Because the bug has had all those years to get to know us so well, it has evolved several effective ways to circumvent the immune system’s ability to detect and kill invading pathogens. Scientific knowledge of how the immune system interacts with M. tuberculosis is slowly improving, but we are far from prevention or an effective vaccine. It’s important to understand TB, because the disease is a serious and growing public health problem."

According to Kirschner, approximately 2 billion people worldwide are infected with M. tuberculosis, and the disease kills about 3 million people every year. In the early stages of infection, tuberculosis can be treated with powerful antibiotics, but there is no cure. And multi-drug-resistant strains, which are essentially untreatable, are becoming more common.

The immune system’s immediate response to the presence of M. tuberculosis in the lungs is to surround the bacteria with immune cells called macrophages, which signal other immune cells to join them for a group assault on the invading bacteria, Kirschner says. About 90 percent of the time, these multi-cellular structures called granulomas are enough to stop the bacteria from spreading. Although the individual will always be infected with TB bacteria, the disease will remain in a latent phase and produce no symptoms, unless it flares up again later in life.

Between 5 percent to 10 percent of the time, however, granulomas fail to contain the bacteria. Unless the disease is diagnosed and treated, TB bacteria will continue to spread through the lungs, eventually producing severe respiratory symptoms and death.

Since granulomas are the key counter-offensive in the war between the human host and M. tuberculosis, Kirschner and U-M post-doctoral fellows Jose Segovia-Juarez, Ph.D., and Suman Ganguli, Ph.D., programmed their computer model with experimental data from studies - directed by University of Pittsburgh collaborator Joanne Flynn, Ph.D. - of research animals infected with TB. They then created time-lapse animations demonstrating what happens as a granuloma forms after initial infection with the bacteria.

When they analyzed the results of the computer simulation, Kirschner and her research team found new clues to the immune system’s containment process:

- Granulomas that were unable to contain TB bacteria were packed with inactive macrophages, making it impossible for T cells to get inside the granuloma and properly signal the macrophages to attack and kill M. tuberculosis bacteria. - The arrival time, number and location of "educated" T cells, which had been primed by the immune system to signal macrophages to attack M. tuberculosis, were crucial to the success of the immune response.

- The slow reproduction rate of M. tuberculosis bacteria, which doubles about every two days, helps the bacteria survive undetected inside macrophages for long periods of time.

Mathematical models are a valuable addition to experimental research, because they make it possible to study complex biological systems with many variables in ways that would be impossible in humans or research animals.

"Here we used a new approach called agent-based modeling, which allowed us to track the individual behavior of specific cells in the system and how they contributed to the collective outcome," Kirschner says. "This is one of first applications of this method in studies of infectious diseases within the host."



Kirschner’s research is funded by the National Heart, Lung and Blood Institute of the National Institutes of Health.

Note: Animations of granuloma formation described in this story can be viewed in AVI format on the Web at http://malthus.micro.med.umich.edu/lab/abm/movies/. The first version (clearance.avi) shows what happens to the granuloma when the immune system is able to destroy the bacteria. The second version (containment.avi) shows granuloma formation when infection is contained. The third version (dissemination.avi) shows what happens to the granuloma when the infection is not contained.

Cells are color coded as follows: Inactive macrophages (green), activated macrophages (blue), infected macrophages (orange), chronically infected macrophages (red), T cells (pink), necrotic tissue (brown) and extracellular bacteria (yellow).

Additional Contact:
Kara Gavin, kegavin@umich.edu, 734-764-2220

Sally Pobojewski | EurekAlert!
Further information:
http://malthus.micro.med.umich.edu/lab/abm/movies/

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>