Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ödeme in kranken Gehirnregionen besser erkennen

26.05.2004


Jülicher Wissenschaftler messen Wassergehalt im lebenden Gehirn

Bei vielen Krankheiten des Gehirns, beispielsweise bei einem Hirntumor, sammelt sich Wasser um das kranke Gewebe an. Ein Ödem entsteht und der Wassergehalt im Hirn steigt an. Wissenschaftler des Forschungszentrums Jülich haben ein neues Messverfahren entwickelt, mit dem sie quantitativ den Wassergehalt in unterschiedlichen Bereichen des lebenden Gehirn bis auf etwa ein Prozent genau bestimmen können. Damit können sie jetzt Hirnbilder, die ihnen die Magnetresonanz-Tomographie (MRT) liefert, miteinander vergleichen und kontinuierlich verfolgen, wie sich Ödeme in Abhängigkeit vom Krankheitsverlauf verändern. So können die Hirnforscher unmittelbar erkennen, wie wirksam beispielsweise eine Therapie mit Medikamenten ist. Die neue Methode arbeitet nicht-invasiv ohne chirurgischen Eingriff und so schnell, dass Patienten im klinischen Alltag häufig und trotzdem schonend untersucht werden könnten. Sie bietet zudem ein großes Potential für neue Diagnosemöglichkeiten, beispielsweise bei multipler Sklerose, Hirntumoren oder Schlaganfall.

Die Magnetresonanz-Tomographie kommt ohne Strahlungseinwirkung oder radioaktive Substanzen aus. Die Patienten werden in ein starkes Magnetfeld mit einer Feldstärke von 1,5 Tesla gelegt. Ein zusätzliches schwaches Magnetfeld regt die Protonen des Wassers im Gehirn an. Beim Abschalten des Magnetfelds geben die Protonen kleine magnetische Signale ab. "Die Magnetresonanz-Tomographie liefert in der heute fast ausschließlich eingesetzten Form nur qualitative Informationen. Unterschiedliche Wasser-Konzentrationen können wir damit nicht messen", erklärt der Physiker Dr. Jon Shah, Projektleiter der MRT-Gruppe am Jülicher Institut für Medizin. "Die Signalintensität der einzelnen Bilder ist zudem abhängig davon, wie der Scanner des MR-Tomographen eingestellt ist". Daher ließen sich Hirnbilder eines Patienten, die zu unterschiedlichen Zeiten aufgenommen wurden, bisher schwer oder gar nicht miteinander vergleichen.



Mit der neuen Messmethode sind die Hirnforscher nun unabhängig vom verwendeten Gerät. Das MR-Signal, so überlegten sie, ist proportional zur Protonendichte und müsste sich somit auch proportional zum Wassergehalt im Gewebe verhalten. Aufgrund ihrer Überlegungen entwickelten die Jülicher Wissenschaftler ein neues Messverfahren, mit dem sie den Wassergehalt im lebenden Gehirn quantitativ bestimmen können. Sie können "Karten" erstellen, die den Wassergehalt in den einzelnen Bereichen des Gehirns mit einer Genauigkeit von 99 Prozent zeigen. Der Wassergehalt im Gehirn ist streng reguliert und steigt bei vielen Krankheiten an, so dass unter anderem ein Ödem entsteht. Diese vermehrte Wasseransammlung um das kranke Gewebe kann dazu führen, dass der Druck im Gehirn gefährlich ansteigt. Mit der neuen Messmethode können die Hirnforscher kontinuierlich verfolgen, ob sich das Ödem in Folge der Krankheit weiter ausbreitet oder aber eine Therapie beispielsweise durch Medikamente Erfolg zeigt. "Zudem können wir Änderungen des Wasserinhaltes diagnostizieren, die das ganze Gehirn umfassen eine Möglichkeit, die kein anderes nicht-invasives Diagnoseverfahren bietet", erklärt Jon Shah.

Die neue Messmethode arbeitet aber nicht nur sehr genau, sondern auch schnell. Bislang mussten Patienten mehrere Stunden regungslos im Magnetresonanz-Tomographen liegen, um den Wassergehalt im Gehirn messen zu können. Mit jeder Bewegung verschlechtert sich die Qualität des Bildes, ähnlich einem verwackelten Foto bei langer Belichtungsdauer. Die neue Methode liefert bereits nach 20 Minuten präzise "Wasserkarten" des Gehirns. "Damit eignet sie sich für den klinischen Einsatz, denn nun sind schnelle Messungen möglich", verdeutlicht Dr. Heiko Neeb vom Institut für Medizin, der die neue Methode gemeinsam mit Jon Shah und seinem Team entwickelt hat. Zukünftig wollen die Wissenschaftler die neue Messmethode auf dem stärkeren 4-Tesla Magnetresonanz-Tomographen einsetzen. Davon erwarten sie noch schärfere Bilder dank einer höheren räumlichen Auflösung.

Mit der neuen Methode können die Hirnforscher nicht nur den Wassergehalt, sondern auch andere Parameter quantitativ und in kurzer Zeit messen. Bei Patienten mit einer häufig auftretenden neurologischen Begleiterscheinung der Leberzirrhose können sie den Krankheitsverlauf während der Therapie verfolgen. Bei dieser Krankheit der hepatischen Enzephalopathie reichert sich das Spurenelement Mangan im Gehirn an.

"Mit unserer neuen Messmethode, die wir zum Patent angemeldet haben, haben wir nun die einzigartige Möglichkeit, ohne äußeren Eingriff diagnostisch ausgesprochen wichtige Informationen über den lokalen Wasserinhalt im menschlichen Hirn zu gewinnen", erklärt Heiko Neeb. Die Methode bietet ein großes Potential für neuartige klinische Einsatzmöglichkeiten, welche zur Zeit am Forschungszentrum Jülich untersucht werden. Dazu gehören die Diagnostik von multipler Sklerose, von Hirntumoren und Schlaganfall sowie die Untersuchung von Erkrankungen der weißen Hirnsubstanz. In den kommenden Jahren soll die neue Methode in der Routinediagnostik eingesetzt werden.

Annette Stettien | Forschungszentrum Jülich
Further information:
http://www.fz-juelich.de

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>