Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ödeme in kranken Gehirnregionen besser erkennen

26.05.2004


Jülicher Wissenschaftler messen Wassergehalt im lebenden Gehirn

Bei vielen Krankheiten des Gehirns, beispielsweise bei einem Hirntumor, sammelt sich Wasser um das kranke Gewebe an. Ein Ödem entsteht und der Wassergehalt im Hirn steigt an. Wissenschaftler des Forschungszentrums Jülich haben ein neues Messverfahren entwickelt, mit dem sie quantitativ den Wassergehalt in unterschiedlichen Bereichen des lebenden Gehirn bis auf etwa ein Prozent genau bestimmen können. Damit können sie jetzt Hirnbilder, die ihnen die Magnetresonanz-Tomographie (MRT) liefert, miteinander vergleichen und kontinuierlich verfolgen, wie sich Ödeme in Abhängigkeit vom Krankheitsverlauf verändern. So können die Hirnforscher unmittelbar erkennen, wie wirksam beispielsweise eine Therapie mit Medikamenten ist. Die neue Methode arbeitet nicht-invasiv ohne chirurgischen Eingriff und so schnell, dass Patienten im klinischen Alltag häufig und trotzdem schonend untersucht werden könnten. Sie bietet zudem ein großes Potential für neue Diagnosemöglichkeiten, beispielsweise bei multipler Sklerose, Hirntumoren oder Schlaganfall.

Die Magnetresonanz-Tomographie kommt ohne Strahlungseinwirkung oder radioaktive Substanzen aus. Die Patienten werden in ein starkes Magnetfeld mit einer Feldstärke von 1,5 Tesla gelegt. Ein zusätzliches schwaches Magnetfeld regt die Protonen des Wassers im Gehirn an. Beim Abschalten des Magnetfelds geben die Protonen kleine magnetische Signale ab. "Die Magnetresonanz-Tomographie liefert in der heute fast ausschließlich eingesetzten Form nur qualitative Informationen. Unterschiedliche Wasser-Konzentrationen können wir damit nicht messen", erklärt der Physiker Dr. Jon Shah, Projektleiter der MRT-Gruppe am Jülicher Institut für Medizin. "Die Signalintensität der einzelnen Bilder ist zudem abhängig davon, wie der Scanner des MR-Tomographen eingestellt ist". Daher ließen sich Hirnbilder eines Patienten, die zu unterschiedlichen Zeiten aufgenommen wurden, bisher schwer oder gar nicht miteinander vergleichen.



Mit der neuen Messmethode sind die Hirnforscher nun unabhängig vom verwendeten Gerät. Das MR-Signal, so überlegten sie, ist proportional zur Protonendichte und müsste sich somit auch proportional zum Wassergehalt im Gewebe verhalten. Aufgrund ihrer Überlegungen entwickelten die Jülicher Wissenschaftler ein neues Messverfahren, mit dem sie den Wassergehalt im lebenden Gehirn quantitativ bestimmen können. Sie können "Karten" erstellen, die den Wassergehalt in den einzelnen Bereichen des Gehirns mit einer Genauigkeit von 99 Prozent zeigen. Der Wassergehalt im Gehirn ist streng reguliert und steigt bei vielen Krankheiten an, so dass unter anderem ein Ödem entsteht. Diese vermehrte Wasseransammlung um das kranke Gewebe kann dazu führen, dass der Druck im Gehirn gefährlich ansteigt. Mit der neuen Messmethode können die Hirnforscher kontinuierlich verfolgen, ob sich das Ödem in Folge der Krankheit weiter ausbreitet oder aber eine Therapie beispielsweise durch Medikamente Erfolg zeigt. "Zudem können wir Änderungen des Wasserinhaltes diagnostizieren, die das ganze Gehirn umfassen eine Möglichkeit, die kein anderes nicht-invasives Diagnoseverfahren bietet", erklärt Jon Shah.

Die neue Messmethode arbeitet aber nicht nur sehr genau, sondern auch schnell. Bislang mussten Patienten mehrere Stunden regungslos im Magnetresonanz-Tomographen liegen, um den Wassergehalt im Gehirn messen zu können. Mit jeder Bewegung verschlechtert sich die Qualität des Bildes, ähnlich einem verwackelten Foto bei langer Belichtungsdauer. Die neue Methode liefert bereits nach 20 Minuten präzise "Wasserkarten" des Gehirns. "Damit eignet sie sich für den klinischen Einsatz, denn nun sind schnelle Messungen möglich", verdeutlicht Dr. Heiko Neeb vom Institut für Medizin, der die neue Methode gemeinsam mit Jon Shah und seinem Team entwickelt hat. Zukünftig wollen die Wissenschaftler die neue Messmethode auf dem stärkeren 4-Tesla Magnetresonanz-Tomographen einsetzen. Davon erwarten sie noch schärfere Bilder dank einer höheren räumlichen Auflösung.

Mit der neuen Methode können die Hirnforscher nicht nur den Wassergehalt, sondern auch andere Parameter quantitativ und in kurzer Zeit messen. Bei Patienten mit einer häufig auftretenden neurologischen Begleiterscheinung der Leberzirrhose können sie den Krankheitsverlauf während der Therapie verfolgen. Bei dieser Krankheit der hepatischen Enzephalopathie reichert sich das Spurenelement Mangan im Gehirn an.

"Mit unserer neuen Messmethode, die wir zum Patent angemeldet haben, haben wir nun die einzigartige Möglichkeit, ohne äußeren Eingriff diagnostisch ausgesprochen wichtige Informationen über den lokalen Wasserinhalt im menschlichen Hirn zu gewinnen", erklärt Heiko Neeb. Die Methode bietet ein großes Potential für neuartige klinische Einsatzmöglichkeiten, welche zur Zeit am Forschungszentrum Jülich untersucht werden. Dazu gehören die Diagnostik von multipler Sklerose, von Hirntumoren und Schlaganfall sowie die Untersuchung von Erkrankungen der weißen Hirnsubstanz. In den kommenden Jahren soll die neue Methode in der Routinediagnostik eingesetzt werden.

Annette Stettien | Forschungszentrum Jülich
Further information:
http://www.fz-juelich.de

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>