Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ödeme in kranken Gehirnregionen besser erkennen

26.05.2004


Jülicher Wissenschaftler messen Wassergehalt im lebenden Gehirn

Bei vielen Krankheiten des Gehirns, beispielsweise bei einem Hirntumor, sammelt sich Wasser um das kranke Gewebe an. Ein Ödem entsteht und der Wassergehalt im Hirn steigt an. Wissenschaftler des Forschungszentrums Jülich haben ein neues Messverfahren entwickelt, mit dem sie quantitativ den Wassergehalt in unterschiedlichen Bereichen des lebenden Gehirn bis auf etwa ein Prozent genau bestimmen können. Damit können sie jetzt Hirnbilder, die ihnen die Magnetresonanz-Tomographie (MRT) liefert, miteinander vergleichen und kontinuierlich verfolgen, wie sich Ödeme in Abhängigkeit vom Krankheitsverlauf verändern. So können die Hirnforscher unmittelbar erkennen, wie wirksam beispielsweise eine Therapie mit Medikamenten ist. Die neue Methode arbeitet nicht-invasiv ohne chirurgischen Eingriff und so schnell, dass Patienten im klinischen Alltag häufig und trotzdem schonend untersucht werden könnten. Sie bietet zudem ein großes Potential für neue Diagnosemöglichkeiten, beispielsweise bei multipler Sklerose, Hirntumoren oder Schlaganfall.

Die Magnetresonanz-Tomographie kommt ohne Strahlungseinwirkung oder radioaktive Substanzen aus. Die Patienten werden in ein starkes Magnetfeld mit einer Feldstärke von 1,5 Tesla gelegt. Ein zusätzliches schwaches Magnetfeld regt die Protonen des Wassers im Gehirn an. Beim Abschalten des Magnetfelds geben die Protonen kleine magnetische Signale ab. "Die Magnetresonanz-Tomographie liefert in der heute fast ausschließlich eingesetzten Form nur qualitative Informationen. Unterschiedliche Wasser-Konzentrationen können wir damit nicht messen", erklärt der Physiker Dr. Jon Shah, Projektleiter der MRT-Gruppe am Jülicher Institut für Medizin. "Die Signalintensität der einzelnen Bilder ist zudem abhängig davon, wie der Scanner des MR-Tomographen eingestellt ist". Daher ließen sich Hirnbilder eines Patienten, die zu unterschiedlichen Zeiten aufgenommen wurden, bisher schwer oder gar nicht miteinander vergleichen.



Mit der neuen Messmethode sind die Hirnforscher nun unabhängig vom verwendeten Gerät. Das MR-Signal, so überlegten sie, ist proportional zur Protonendichte und müsste sich somit auch proportional zum Wassergehalt im Gewebe verhalten. Aufgrund ihrer Überlegungen entwickelten die Jülicher Wissenschaftler ein neues Messverfahren, mit dem sie den Wassergehalt im lebenden Gehirn quantitativ bestimmen können. Sie können "Karten" erstellen, die den Wassergehalt in den einzelnen Bereichen des Gehirns mit einer Genauigkeit von 99 Prozent zeigen. Der Wassergehalt im Gehirn ist streng reguliert und steigt bei vielen Krankheiten an, so dass unter anderem ein Ödem entsteht. Diese vermehrte Wasseransammlung um das kranke Gewebe kann dazu führen, dass der Druck im Gehirn gefährlich ansteigt. Mit der neuen Messmethode können die Hirnforscher kontinuierlich verfolgen, ob sich das Ödem in Folge der Krankheit weiter ausbreitet oder aber eine Therapie beispielsweise durch Medikamente Erfolg zeigt. "Zudem können wir Änderungen des Wasserinhaltes diagnostizieren, die das ganze Gehirn umfassen eine Möglichkeit, die kein anderes nicht-invasives Diagnoseverfahren bietet", erklärt Jon Shah.

Die neue Messmethode arbeitet aber nicht nur sehr genau, sondern auch schnell. Bislang mussten Patienten mehrere Stunden regungslos im Magnetresonanz-Tomographen liegen, um den Wassergehalt im Gehirn messen zu können. Mit jeder Bewegung verschlechtert sich die Qualität des Bildes, ähnlich einem verwackelten Foto bei langer Belichtungsdauer. Die neue Methode liefert bereits nach 20 Minuten präzise "Wasserkarten" des Gehirns. "Damit eignet sie sich für den klinischen Einsatz, denn nun sind schnelle Messungen möglich", verdeutlicht Dr. Heiko Neeb vom Institut für Medizin, der die neue Methode gemeinsam mit Jon Shah und seinem Team entwickelt hat. Zukünftig wollen die Wissenschaftler die neue Messmethode auf dem stärkeren 4-Tesla Magnetresonanz-Tomographen einsetzen. Davon erwarten sie noch schärfere Bilder dank einer höheren räumlichen Auflösung.

Mit der neuen Methode können die Hirnforscher nicht nur den Wassergehalt, sondern auch andere Parameter quantitativ und in kurzer Zeit messen. Bei Patienten mit einer häufig auftretenden neurologischen Begleiterscheinung der Leberzirrhose können sie den Krankheitsverlauf während der Therapie verfolgen. Bei dieser Krankheit der hepatischen Enzephalopathie reichert sich das Spurenelement Mangan im Gehirn an.

"Mit unserer neuen Messmethode, die wir zum Patent angemeldet haben, haben wir nun die einzigartige Möglichkeit, ohne äußeren Eingriff diagnostisch ausgesprochen wichtige Informationen über den lokalen Wasserinhalt im menschlichen Hirn zu gewinnen", erklärt Heiko Neeb. Die Methode bietet ein großes Potential für neuartige klinische Einsatzmöglichkeiten, welche zur Zeit am Forschungszentrum Jülich untersucht werden. Dazu gehören die Diagnostik von multipler Sklerose, von Hirntumoren und Schlaganfall sowie die Untersuchung von Erkrankungen der weißen Hirnsubstanz. In den kommenden Jahren soll die neue Methode in der Routinediagnostik eingesetzt werden.

Annette Stettien | Forschungszentrum Jülich
Further information:
http://www.fz-juelich.de

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>