Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technology blocks gene to increase immune response against deadly brain tumor cells


With new technology that uses short strands of genetic material to shut down a specific gene, researchers have regulated immune system proteins to boost production of cells that seek and destroy cancer cells. This approach may improve the effectiveness of vaccines in the treatment of tumors, including malignant brain tumors.

Results of the study appear in the June issue of the European Journal of Immunology, and the research was conducted at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute, where clinical trials of dendritic cell immunotherapy have been underway for several years.

Dendritic cells are the immune system’s most potent antigen-presenting cells – those that identify "foreign" substances for destruction. Because cancer cells often are not recognized by dendritic cells as antigens, the neurosurgeons and other scientists at the Institute have developed and studied a vaccine in the treatment of highly aggressive brain tumors called gliomas. They combine in the laboratory tumor cells that have been surgically removed and dendritic cells derived from a patient’s blood. The new cells are injected back into the patient to seek out other cancer cells for destruction.

Early clinical trials have shown an increase in survival rates among patients receiving the dendritic cell vaccine. Meanwhile, Institute researchers have been studying underlying genetic and cellular mechanisms as well as other methods for increasing immune response and enhancing the vaccine’s effectiveness.

"This study demonstrates that by turning off the interleukin 10 gene in the dendritic cell we can make a much more effective dendritic cell in terms of generating a significant immune response," said John S. Yu, MD, the article’s senior author and co-director of the Comprehensive Brain Tumor Program at Cedars-Sinai.

One of the functions of dendritic cells is to influence immature T cells to become either T helper type 1 (Th1) or T helper type 2 (Th2) cells. A naturally occurring protein, interleukin 12 (IL-12), interacting with dendritic cells, spurs the development of Th1 cells. Interleukin 10 (IL-10) inhibits the production of IL-12.

"Interleukin 10 is a molecule that generates a Th2 response, which is effective against organisms such as bacteria, but for a tumor treatment a Th1 response is our goal. The Th1 response is generated through T cells against a tumor," said Dr. Yu.

In this study, the researchers used a new approach called RNA interference to target the IL-10 gene, inserting short strands of synthetic IL-10 specific RNA (small interfering RNA or siRNA) into dendritic cells generated from peripheral blood cells. Suppression of the IL-10 gene inhibited the secretion of the IL-10 protein, which allowed increased production of IL-12. Naïve T cells co-cultured with siRNA-treated dendritic cells developed into Th1 cells and generated a strong immune response in lab studies.

Keith Black, MD, director of the Maxine Dunitz Neurosurgical Institute, the Division of Neurosurgery and the Comprehensive Brain Tumor Program, said this is one of several ongoing studies aimed at making the dendritic cell vaccine more effective against the deadliest tumors.

"We are accumulating evidence that brain tumors themselves play a role in suppressing the T cell response, and we think this is one reason gliomas grow so quickly. The strategy of shutting down the IL-10 gene may be one way of counteracting this immune inhibition," said Dr. Black, who holds the Ruth and Lawrence Harvey Chair in Neuroscience at Cedars-Sinai.

The study was supported in part by National Institutes of Health grant number NS02232 to Dr. Yu.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Citation: European Journal of Immunology, June 2004: "Small interference RNA modulation of interleukin 10 in human monocyte-derived dendritic cells enhances the Th1 response."

Sandra Van | Van Communications
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>