Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology blocks gene to increase immune response against deadly brain tumor cells

26.05.2004


With new technology that uses short strands of genetic material to shut down a specific gene, researchers have regulated immune system proteins to boost production of cells that seek and destroy cancer cells. This approach may improve the effectiveness of vaccines in the treatment of tumors, including malignant brain tumors.



Results of the study appear in the June issue of the European Journal of Immunology, and the research was conducted at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute, where clinical trials of dendritic cell immunotherapy have been underway for several years.

Dendritic cells are the immune system’s most potent antigen-presenting cells – those that identify "foreign" substances for destruction. Because cancer cells often are not recognized by dendritic cells as antigens, the neurosurgeons and other scientists at the Institute have developed and studied a vaccine in the treatment of highly aggressive brain tumors called gliomas. They combine in the laboratory tumor cells that have been surgically removed and dendritic cells derived from a patient’s blood. The new cells are injected back into the patient to seek out other cancer cells for destruction.


Early clinical trials have shown an increase in survival rates among patients receiving the dendritic cell vaccine. Meanwhile, Institute researchers have been studying underlying genetic and cellular mechanisms as well as other methods for increasing immune response and enhancing the vaccine’s effectiveness.

"This study demonstrates that by turning off the interleukin 10 gene in the dendritic cell we can make a much more effective dendritic cell in terms of generating a significant immune response," said John S. Yu, MD, the article’s senior author and co-director of the Comprehensive Brain Tumor Program at Cedars-Sinai.

One of the functions of dendritic cells is to influence immature T cells to become either T helper type 1 (Th1) or T helper type 2 (Th2) cells. A naturally occurring protein, interleukin 12 (IL-12), interacting with dendritic cells, spurs the development of Th1 cells. Interleukin 10 (IL-10) inhibits the production of IL-12.

"Interleukin 10 is a molecule that generates a Th2 response, which is effective against organisms such as bacteria, but for a tumor treatment a Th1 response is our goal. The Th1 response is generated through T cells against a tumor," said Dr. Yu.

In this study, the researchers used a new approach called RNA interference to target the IL-10 gene, inserting short strands of synthetic IL-10 specific RNA (small interfering RNA or siRNA) into dendritic cells generated from peripheral blood cells. Suppression of the IL-10 gene inhibited the secretion of the IL-10 protein, which allowed increased production of IL-12. Naïve T cells co-cultured with siRNA-treated dendritic cells developed into Th1 cells and generated a strong immune response in lab studies.

Keith Black, MD, director of the Maxine Dunitz Neurosurgical Institute, the Division of Neurosurgery and the Comprehensive Brain Tumor Program, said this is one of several ongoing studies aimed at making the dendritic cell vaccine more effective against the deadliest tumors.

"We are accumulating evidence that brain tumors themselves play a role in suppressing the T cell response, and we think this is one reason gliomas grow so quickly. The strategy of shutting down the IL-10 gene may be one way of counteracting this immune inhibition," said Dr. Black, who holds the Ruth and Lawrence Harvey Chair in Neuroscience at Cedars-Sinai.



The study was supported in part by National Institutes of Health grant number NS02232 to Dr. Yu.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Citation: European Journal of Immunology, June 2004: "Small interference RNA modulation of interleukin 10 in human monocyte-derived dendritic cells enhances the Th1 response."

Sandra Van | Van Communications
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>