Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative ‘self healing’ bandage to help diabetics

25.05.2004


A revolutionary type of ‘self healing’ bandage that uses the patient’s own cells is being developed. The technique has already been tried successfully on patients with diabetic ulcers and in the long-term could offer a more effective, quicker and cost efficient way of treating many types of slow-healing wounds such as pressure ulcers. The bandages are already available for patients with severe burns.



The bandages have been developed by CellTran Ltd., a spin-out company from the University of Sheffield. CellTran has grown from fundamental research funded by the Engineering and Physical Sciences Research Council (EPSRC).

Levels of diabetes in the UK are forecast to rise significantly in the years ahead. Chronic ulcers affect many diabetics, with sufferers often attending clinics for months or years to have their wounds dressed. CellTran offers an innovative but simple approach to healing diabetic ulcers and other slow-healing wounds, based on a combination of surface engineering and cell biology.


A small tissue sample is taken from a patient and a culture is grown from the cells in a laboratory. The cells are then placed on a membrane made from a medical-grade polymer. The membrane has been treated with a special cell-friendly coating, enabling skin cells to attach and grow on this surface. When cells are ready, the cell-membrane bandage is taken to the relevant clinic and used to dress the patient’s wound instead of a standard bandage.

Because these cells belong to the patient, they are not rejected by the body but can actually transfer to the wound and grow. For particularly difficult wounds, the cells are applied every week. Early clinical studies have shown that weekly dressings enable these difficult wounds to heal in an average of eight weeks. Clinical trials are now under way, and the technique is also being used on other types of ulcer and on patients with extensive burns.

The underlying EPSRC-funded work at the University has focused on the development of surfaces that human cells will not only grow on but also transfer from to the patient’s wound. It is also developing new approaches to culturing human skin cells without using animal derived products such as bovine serum.

The new bandages could take some pressure off healthcare budgets by reducing the need for long-term patient treatment. CellTran also aims to develop off-the-shelf products which can be used in the patient’s home, avoiding visits to outpatient clinics altogether. Sheila MacNeil, CellTran’s Research & Development Director and Professor of Tissue Engineering at the University of Sheffield, says; “we are moving the technology through to clinical use as quickly as we can and our objective is to make it as simple to use and as low-cost as possible”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>