Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative ‘self healing’ bandage to help diabetics

25.05.2004


A revolutionary type of ‘self healing’ bandage that uses the patient’s own cells is being developed. The technique has already been tried successfully on patients with diabetic ulcers and in the long-term could offer a more effective, quicker and cost efficient way of treating many types of slow-healing wounds such as pressure ulcers. The bandages are already available for patients with severe burns.



The bandages have been developed by CellTran Ltd., a spin-out company from the University of Sheffield. CellTran has grown from fundamental research funded by the Engineering and Physical Sciences Research Council (EPSRC).

Levels of diabetes in the UK are forecast to rise significantly in the years ahead. Chronic ulcers affect many diabetics, with sufferers often attending clinics for months or years to have their wounds dressed. CellTran offers an innovative but simple approach to healing diabetic ulcers and other slow-healing wounds, based on a combination of surface engineering and cell biology.


A small tissue sample is taken from a patient and a culture is grown from the cells in a laboratory. The cells are then placed on a membrane made from a medical-grade polymer. The membrane has been treated with a special cell-friendly coating, enabling skin cells to attach and grow on this surface. When cells are ready, the cell-membrane bandage is taken to the relevant clinic and used to dress the patient’s wound instead of a standard bandage.

Because these cells belong to the patient, they are not rejected by the body but can actually transfer to the wound and grow. For particularly difficult wounds, the cells are applied every week. Early clinical studies have shown that weekly dressings enable these difficult wounds to heal in an average of eight weeks. Clinical trials are now under way, and the technique is also being used on other types of ulcer and on patients with extensive burns.

The underlying EPSRC-funded work at the University has focused on the development of surfaces that human cells will not only grow on but also transfer from to the patient’s wound. It is also developing new approaches to culturing human skin cells without using animal derived products such as bovine serum.

The new bandages could take some pressure off healthcare budgets by reducing the need for long-term patient treatment. CellTran also aims to develop off-the-shelf products which can be used in the patient’s home, avoiding visits to outpatient clinics altogether. Sheila MacNeil, CellTran’s Research & Development Director and Professor of Tissue Engineering at the University of Sheffield, says; “we are moving the technology through to clinical use as quickly as we can and our objective is to make it as simple to use and as low-cost as possible”.

Jane Reck | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>