Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Researchers Find Combining Two Types of Radiation Therapy is Better for Treating Brain Cancer

21.05.2004


Adding stereotactic radiosurgery – which entails delivering radiation to specific points in the brain while sparing normal tissue – after whole brain radiation therapy helps certain patients with cancer that has spread to the brain live longer, says a new study by researchers at Thomas Jefferson University Hospital in Philadelphia.



In as many as one-third of all patients with lung and breast cancers, the disease spreads, or metastasizes, to the brain, leaving few good options. The disease causes neurological problems, and many patients live only about four months. Chemotherapy has been relatively ineffective in shrinking tumors and improving quality of life.

Between 1996 and 2001, the Radiation Therapy Oncology Group (RTOG), a federally funded clinical trials group, led by researchers at Jefferson Medical College and elsewhere randomly assigned 333 patients to receive either the standard whole brain radiation therapy alone, or whole brain radiation therapy followed by stereotactic radiosurgery.


The researchers found that patients with a single brain metastases who received radiosurgery immediately after whole brain radiation lived on average one to two months longer. Many of those had an improved quality of life after radiosurgery. Some of those with two or three brain metastases had some improvement in survival as well.

“It’s significant because it demonstrates for the first time a therapeutic benefit of stereotactic radiosurgery, which is a widely used technique,” says first author David Andrews, M.D., professor of neurosurgery at Jefferson Medical College of Thomas Jefferson University in Philadelphia.

The researchers reported their results May 22, 2004 in the journal The Lancet.

“Our results establish a new standard of care for the treating oncologist and provide patients with realistic hope for an improved prognosis and better quality of life after treatment,” Dr. Andrews says.

“This is the first non-surgical treatment to show benefit for brain metastases in any group of patients,” says RTOG group chairman Walter J. Curran, Jr., M.D., professor and chair of radiation oncology at Jefferson Medical College and clinical director of Jefferson’s Kimmel Cancer Center.

Brain metastases affect as many as 100,000 individuals.

“It’s a real advance in the management of patients with brain metastases,” says Dr. Curran.

Other study authors include Adam Flanders, M.D., and Maria Werner-Wasik, M.D., Thomas Jefferson University; Charles Scott, Ph.D., American College of Radiology; Paul Sperduto, M.D., Metro Minneapolis CCOP; Laurie Gaspar, M.D., University of Colorado Health Sciences Center; Michael Schell, Ph.D., University of Rochester Cancer Center; William Demas, M.D., Akron City Hospital; Janice Ryu, M.D., University of California, Davis Medical Center; Jean-Paul Bahary, M.D., Notre Dame Hospital/University of Montreal; Louis Souhami, M.D., from McGill University; Marvin Rotman, M.D., SUNY Health Science Center, Brooklyn; and Minesh Mehta, M.D., University of Wisconsin Medical School.

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17747

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>